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The longest common increasing subsequences (LCIS) problem is to find out a common 
increasing subsequence with the maximal length of two given sequences A and B . In 
this paper, we propose an algorithm for solving the LCIS problem with O ((n + L(m −
L)) log log |�|) time and O(n) space, where m and n denote the lengths of A and B , 
respectively, m ≤ n, L denotes the LCIS length, and � denotes the alphabet set. The main 
idea of our algorithm is to extend the answer from some previously feasible solutions, in 
which the domination function is invoked. To accomplish the extension and domination 
functions, the data structure of the van Emde Boas tree is utilized. From the time 
complexity, it is obvious that our algorithm is extremely efficient when L is very small 
or L is close to m. Some experiments are performed to demonstrate the efficiency of our 
algorithm.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The longest common increasing subsequences (LCIS) problem is a combined variant of the longest common subsequence (LCS) 
problem and the longest increasing subsequence (LIS) problem. For given two sequences A and B , the LCIS problem aims to 
find the common subsequence such that it is increasing in both A and B , and it is the longest. The LCS can be used to 
measure the similarity of two sequences in many applications, such as computational biology, pattern matching, plagiarism 
detection, and voice recognition. Many LCS algorithms have been proposed by researchers [1–5] in the past decades.

For solving the LCS problem, in 1974, Wagner and Fischer presented a dynamic programming (DP) algorithm with O (mn)

time and space [5], where m and n denotes the lengths of the input sequences A and B , respectively. Then, in 1977, Hunt 
and Szymanski presented a practically faster algorithm in O ((R + m) log m) time [3], where R is the total number of match 
pairs between two given sequences A and B . This algorithm is efficient when R is small; that is, A and B are dissimilar. 
In 1982, Nakatsu et al. proposed a diagonal algorithm in O (n(m − L)) time, where L denotes the LCS length, which is 
more efficient if two given sequences A and B are similar [4]. Note that R is different from L. For example, suppose that 
A = 〈a, d, c, b〉 and B = 〈a, c, a, d〉. Then R = 4 and L = 2. The diagonal concept was successfully applied to solving the 
merged longest common subsequence problem [6].
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Table 1
The time complexities of the LIS, LCIS and LCWIS algorithms. Here, L denotes the length of the answer, R denotes 
the number of match pairs in A and B , and � denotes the alphabet set.

LIS

Year Author(s) Time complexity Keywords

1961 Schensted [7] O (n logn) Binary search

1973 Knuth [8] O (n logn) Binary search

1975 Fredman [19] O (n logn) Pruned comparison tree

1977 Hunt and Szymanski [3] O (n log log n) Match pair

1977 Bespamyatnikh and Segal [9] O (n log log n) van Emde Boas tree

1977 Crochemore et al. [20] O (n log log L) Split block
Priority queue
van Emde Boas tree

LCIS

Year Author(s) Time complexity Keywords

2005 Yang et al. [12] O (mn) Dynamic programming

2006 Sakai [13] O (mn) Divide-and-conquer

2006 Brodal et al. [14,15] O ((n + mL) log log |�| + Sort) Divide-and-conquer
Bounded heap
van Emde Boas tree

2007 Chan et al. [16] O (min(R log L,nL + R) log log n + Sort(n)) Match pair
Binary search
van Emde Boas tree

2018 Cai et al. [17] O (mn) No divide-and-conquer

This paper O ((n + L(m − L)) log log |�|) Diagonal
van Emde Boas tree

LCWIS for 3-letter

Year Author(s) Time complexity Keywords

2006 Brodal et al. [14,15] O (min{n + m logm,n log log n}) Split diagram
Priority queue
van Emde Boas tree

2013 Duraj [18] O (m + n) Update and add

The LIS also has a rich history. When the input is an arbitrary sequence of n numbers, Schensted [7] and Knuth [8]
proposed an algorithm with O (n log n) time. Furthermore, if the input is a permutation of {1, 2, . . . , n}, Hunt and Szymanski 
[3], and Bespamyatnikh and Segal [9] both presented algorithms with the same time complexity O (n log log n).

The LCIS problem can also be used in some applications, such as pattern recognition and the whole genome alignment 
[10,11]. Its goal is to align two or more genomes, and to find the longest sets of maximal unique matching subsequences 
whose sequences exist in ascending order. Some algorithms have been proposed for the LCIS problem. In 2005, Yang et al.
designed a dynamic programming method in O (mn) time and space [12]. In 2006, Sakai first designed an algorithm with the 
linear space complexity [13]. He utilized the divide-and-conquer approach used for the LCS problem [2], which improved the 
algorithm of Yang et al. In the same year, Brodal et al. [14,15] gave an efficient algorithm with O ((n +mL) log log |�| + Sort)
time when L is relatively small, where L denotes the LCIS length and � denotes the alphabet set of A and B . Next year, 
Chan et al. also proposed a fast algorithm with O ((nL + R) log logn + Sort(n)) time [16], where R denotes the total number 
of match pairs between the two sequences. It is obvious that the algorithm is efficient when R is small. In 2018, a linear 
space algorithm without utilizing the divide-and-conquer concept was proposed by Cai et al. [17].

There is a variant of LCIS called the longest common weakly-increasing (or non-decreasing) subsequence (LCWIS) for 3-letter. 
For example, assume that A = 〈0, 1, 0, 1, 1, 2〉 and B = 〈0, 1, 1, 2, 1, 2〉. Thus, we have LC W I S(A, B) = 〈0, 1, 1, 1, 2〉. In 2006, 
Brodal et al. [14,15] proposed an algorithm with O (min{n + m log m, n log log n}) time. In 2013, Duraj [18] improved the 
Brodal algorithm to O (m + n) time. The time complexities of these related algorithms are shown in Table 1.

The rest of this paper is organized as follows. In Section 2, we first give the formal definition of the LCIS problem. Then, 
we introduce the previous algorithm for the LCIS problem, and the LCS algorithm of Nakatsu et al., which is the inspiration 
of our LCIS algorithm. We present our algorithm for solving the LCIS problem in Section 3. In our algorithm, we extend 
the answer from some previously feasible solutions to get longer solutions, in which the domination function is used to 
remove the dominated solutions. The predecessor and successor operations are invoked in the extension and domination 
functions. The time complexity of our algorithm is O ((n + L(m − L)) log log |�|) time and the space complexity is O(n). In 
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Table 2
An example for the LCIS algorithm of Yang et al. with A = 〈4, 5, 1, 4, 8〉 and B = 〈1, 5, 4, 7, 2, 5, 8, 4〉. Here, the red underlined numbers indicate the updates.

1 5 4 7 2 5 8 4
4 L1,3[1] = 4 L1,4[1] = 4 L1,5[1] = 4 L1,6[1] = 4 L1,7[1] = 4 L1,8[1] = 4

5 L2,2[1] = 5 L2,3[1] = 4 L2,4[1] = 4 L2,5[1] = 4 L2,6[1] = 4 L2,7[1] = 4 L2,8[1] = 4
L2,6[2] = 5 L2,7[2] = 5 L2,8[2] = 5

1 L3,1[1] = 1 L3,2[1] = 1 L3,3[1] = 1 L3,4[1] = 1 L3,5[1] = 1 L3,6[1] = 1 L3,7[1] = 1 L3,8[1] = 1
L3,6[2] = 5 L3,7[2] = 5 L3,8[2] = 5

4 L4,1[1] = 1 L4,2[1] = 1 L4,3[1] = 1 L4,4[1] = 1 L4,5[1] = 1 L4,6[1] = 1 L4,7[1] = 1 L4,8[1] = 1
L4,3[2] = 4 L4,4[2] = 4 L4,5[2] = 4 L4,6[2] = 4 L4,7[2] = 4 L4,8[2] = 4

8 L5,1[1] = 1 L5,2[1] = 1 L5,3[1] = 1 L5,4[1] = 1 L5,5[1] = 1 L5,6[1] = 1 L5,7[1] = 1 L5,8[1] = 1
L5,3[2] = 4 L5,4[2] = 4 L5,5[2] = 4 L5,6[2] = 4 L5,7[2] = 4 L5,8[2] = 4

L5,7[3] = 8 L5,8[3] = 8

Section 4, some experiments are performed to compare our algorithm with previously published algorithms. Finally, we give 
our conclusions and future works in Section 5.

2. Preliminaries

We first give the definition of the LCIS problem.

Definition 1. [12] Given two sequences A = 〈a1, a2, a3, . . . , am〉 and B = 〈b1, b2, b3, . . . , bn〉, an increasing subsequence of A
is formed by any arbitrary t elements chosen from A in the original order such that ap1 < ap2 < ap3 < · · · < apt , where 
1 ≤ pi ≤ m, 1 ≤ i ≤ t . A common increasing subsequence (CIS) is a common subsequence S = 〈s1, s2, s3, . . . , sl〉 of A and B , 
where s1 < s2 < s3 < · · · < sl . The longest common increasing subsequence (LCIS) is the largest one among these CIS answers, 
and it is denoted by LC I S(A, B).

Without loss of generality, here we assume that m ≤ n. Note that the above definition can be applied to each case that 
the quantity order of every two elements in A or B can be determined, such as a sequence of numbers. For example, 
consider sequences A = 〈4, 5, 1, 4, 8〉 and B = 〈1, 5, 4, 7, 2, 5, 8, 4〉, where |A| = m = 5 and |B| = n = 8. In this example, 
〈4, 8〉, 〈5, 8〉, and 〈4, 5, 8〉 are all common increasing subsequences of A and B . LC I S(A, B) = 〈4, 5, 8〉 or 〈1, 4, 8〉 is the 
answer of the LCIS problem.

Yang et al. designed a dynamic programming method for solving the LCIS problem in O (mn) time and space [12]. Let 
Li, j[k] denote the smallest ending number of an LCIS of length k with 〈a1, a2, a3, . . . , ai〉 and 〈b1, b2, b3, . . . , b j〉, where 1 ≤
k, i ≤ m and 1 ≤ j ≤ n. We use an example to explain their algorithm with A = 〈4, 5, 1, 4, 8〉 and B = 〈1, 5, 4, 7, 2, 5, 8, 4〉, 
as shown in Table 2.

We first process a1 = 4, and find that 4 is at b3 of B , thus we have L1,3[1] = 4. And then, we set L1,3[1] = 4, L1,4[1] =
4, . . . , L1,8[1] = 4. Next, we find 5 (a2) in b2 and b6, where b6 can increase the LCIS length. Therefore, we get L2,2[1] = 5, 
L2,6[2] = 5, L2,7[2] = 5 and L2,8[2] = 5. The other values on the second row, L2,3[1], L2,4[1], . . . , L2,8[1], are set by copying 
the values from L1,3[1], L1,4[1], . . . , L1,8[1], respectively. In the third row, 1 (a3) is matched in b1. Here, 1 is better than 5 
and 4, because it uses the smaller number in the same length. We can get L3,1[1] = 1, L3,2[1] = 1, . . . , L3,8[1] = 1. Repeating 
the above steps, the solution can be obtained.

Nakatsu et al. proposed an algorithm with O (n (m − L)) time for the LCS problem of two sequences A and B [4], where 
|A| = m ≤ |B| = n, and L denotes the LCS length. This algorithm is extremely efficient for similar sequences; that is, L is 
close to m.

Let di,s denote the smallest index j of B such that |LC S(A1..i, B1.. j)| = s. Nakatsu et al. solved the LCS problem with di,s , 
where 0 ≤ i, s ≤ m, by the following formula:

di,s =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if s = 0;
∞ if s ≥ i + 1;
min( j,di−1,s) if there exists the smallest j such that ai = b j,

where j > di−1,s−1 when s ≥ 1;
di−1,s otherwise.

(1)

3. Our algorithm for the longest common increasing subsequence problem

We solve the LCIS problem by the diagonal-based method, inspired by the concept of Nakatsu et al. for solving the LCS 
problem [4]. The time complexity of our algorithm is O ((n + L(m − L)) log log |�|) time and the space complexity is O(n). 
We first present a simple example to illustrate our concept in Section 3.1. Then, some formal analyses of our algorithm are 
given in Section 3.2.
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Table 3
The construction of Di,s in the LCIS algorithm with A = 〈4, 5, 1, 4, 8〉 and B =
〈1, 5, 4, 7, 2, 5, 8, 4〉.

Round r

s (length)
0 1 2 3

1
D0,0 D1,1 D2,2 D3,3

〈0,0〉 〈4, 3〉 〈5, 6〉
2

D1,0 D2,1 D3,2 D4,3

〈0,0〉 〈4, 3〉
〈5, 2〉

〈5, 6〉

3
D2,0 D3,1 D4,2 D5,3

〈0,0〉 〈1, 1〉
〈4,3〉
〈5,2〉

〈4, 3〉
〈5,6〉

〈8,7〉

3.1. An example for illustrating the concept

For solving the LCIS problem, we propose the dominating set Di,s as a basis of our algorithm.

Definition 2. [6] For any two 2-tuples 〈k1, j1〉 and 〈k2, j2〉, 〈k1, j1〉 �= 〈k2, j2〉, we say that 〈k1, j1〉 dominates 〈k2, j2〉 if 
k1 ≤ k2 and j1 ≤ j2.

Definition 3. Given two sequences A = 〈a1, a2, a3, . . . , am〉 and B = 〈b1, b2, b3, . . . , bn〉, a 2-tuple 〈k, j〉 is in the dominating 
set Di,s if and only if there exists one CIS length s of A1..i and B1.. j with ending number b j = k. Every pair of 2-tuples in 
Di,s do not dominate each other.

In the above definition, A1..i denotes the substring of A starting from position indices 1 to i. For example, suppose that 
A = 〈4, 5, 1, 4, 8〉, B = 〈1, 5, 4, 7, 2, 5, 8, 4〉. We have 〈4, 3〉, 〈5, 2〉 ∈ D2,1. That is, 〈4, 5〉 and 〈1, 5, 4〉 have CIS length 1 with 
ending number b3 = 4, and 〈4, 5〉 and 〈1, 5〉 have CIS length 1 with ending number b2 = 5.

We use an extension function to extend each solution (2-tuple) in Di−1,s−1 to a longer solution in Di,s , defined as 
follows.

Definition 4. Given a dominating set Di−1,s−1, the function Extend(Di−1,s−1) is to extend one element 〈kh, jh〉 ∈ Di−1,s−1
to another 2-tuple 〈k, j〉 ∈ Di,s , where kh < k = ai and jh < j ≤ n, such that j is the smallest index after jh for b j = ai .

Now, we illustrate our idea with an example for the construction of Di,s , as shown in Table 3, with A = 〈4, 5, 1, 4, 8〉
and B = 〈1, 5, 4, 7, 2, 5, 8, 4〉. In the first round, we start with the first element a1 of A and find the first match b3 in B . We 
extend from the initial element 〈0, 0〉 to 〈4, 3〉 with a1 = b3 = 4. So we get D1,1 = {〈4, 3〉}, which means that one CIS of a1
and B1..3 is of length 1 with ending number b3 = 4.

Next, we find a longer CIS answer by Extend(D1,1) = Extend({〈4, 3〉}) with a2 = 5. We get D2,2 = {〈5, 6〉}. Its meaning 
is that one CIS of A1..2 and B1..6 is of length 2 with ending number a2 = b6 = 5. 〈5, 6〉 cannot be extended any more, since 
the next element 1 (a3) is less than 5, not increasing. Thus, D3,3 = ∅. Now, the first round stops. In the first round, the 
possible CIS length 2 is obtained.

In the second round (r = 2), we start at the second element a2 of A and find the first match a2 = b2 in B . Thus, we can 
extend from 〈0, 0〉 to 〈5, 2〉, i.e. Extend(D1,0) = {〈5, 2〉}. We combine D1,1 and 〈5, 2〉 to form D2,1 = {〈4, 3〉, 〈5, 2〉}. Both 
〈4, 3〉 and 〈5, 2〉 are preserved since they have the same CIS length but do not dominate each other. Next, we cannot extend 
D2,1 with a3. We get D3,2 = D2,2 = {〈5, 6〉}. 〈5, 6〉 cannot be extended, since element 4 (a4) is less than 5 of 〈5, 6〉. Thus, 
D4,3 = ∅. Now, the second round stops, and the possible CIS answer is of length 2.

In the third round (r = 3), we can extend from 〈0, 0〉 to 〈1, 1〉 with a3 = 1. It can be seen that 〈1, 1〉 has more possibility 
to find a longer CIS than 〈4, 3〉 and 〈5, 2〉. That is, 〈1, 1〉 dominates 〈4, 3〉 and 〈5, 2〉. Then, 〈4, 3〉 and 〈5, 2〉 are eliminated. 
Thus, D3,1 = Dominate(D2,1, Extend(D2,0)) = {〈1, 1〉}. Here, Dominate is defined later. Note that |Extend(Di−1,s−1)| ≤ 1, 
which will be proved later. Next, we do the extension furthermore. We get D4,2 = Dominate(D3,2, Extend(D3,1)) = {〈4, 3〉}
and D5,3 = Dominate(D4,3, Extend(D4,2)) = {〈8, 7〉}. Finally, we obtain the solution of the LCIS length, which is 3.

The formal definition of the function Dominate is given as follows.

Definition 5. Given a dominating set Di−1,s and a 2-tuple W=〈k, j〉, the function Dominate(Di−1,s, W ) returns the dominat-
ing set which consists of all 2-tuples in Di−1,s and 〈k, j〉 after eliminating dominated 2-tuples.
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3.2. The analyses of our algorithm

Suppose 〈kh, jh〉 ∈ Di−1,s−1. The extension of 〈kh, jh〉 with ai requires that kh < ai . And it is to find the smallest j such 
jh < j ≤ n and ai = b j = k. Then 〈k, j〉 is added into Di,s if 〈k, j〉 is not dominated.

Lemma 1. When Di−1,s−1 is extended with ai , at most one element needs to be extended.

Proof. Let Di−1,s−1 = {〈k1, j1〉, 〈k2, j2〉, . . . , 〈kq , jq〉}, where q = |Di−1,s−1|, k1 < k2 < · · · < kq and j1 > j2 > · · · > jq . Sup-
pose that kh is the largest kh′ such that kh′ < ai , 1 ≤ h′ ≤ q. And suppose that 〈kh, jh〉 is extended to a 2-tuple 〈k, j〉 ∈ Di,s

with ai . Thus, kh < k = ai . For another 〈kh′′ , jh′′ 〉 ∈ Di−1,s−1, where kh′′ < kh , we have jh′′ > jh due to the domination prop-
erty. Thus, 〈k, j〉 should dominate the extension of 〈kh′′ , jh′′ 〉 with ai . Therefore, at most one element of Di−1,s−1 needs to 
be extended. �
Definition 6. Given a dominating set Di,s and an element x, Predecessor (Di,s, x) is to find the 2-tuple with the largest kh
(first entry of the 2-tuple) in Di,s that is less than x; Successor (Di,s, x) is to find the 2-tuple with the smallest kh in Di,s

that is greater than x.

Let 〈kh, jh〉 ∈ Di−1,s−1. There exists one CIS length s − 1 between A1..i−1 and B1.. jh , where b jh = kh . We check one more 
element ai in A. According to Lemma 1, Extend(Di−1,s−1) needs to extend at most one element 〈kh, jh〉 ∈ Di−1,s−1 to 
another 2-tuple 〈k, j〉 ∈ Di,s , where kh < k = ai , jh < j ≤ n, and j is the smallest for b j = k = ai . We have to check only the 
largest kh , which is smaller than ai . So, Predecessor(Di−1,s−1, ai) is used to accomplish this goal. After this extension, we 
get one CIS length s between A1..i and B1.. j if there exists such j after jh . In other words, we extend one element ai in A
to match one common element in B , and thus the CIS length s − 1 is extended to s (or more, improved latter). If 〈k, j〉 does 
not exist, the extension result is defined to be null.

Definition 7. When a 2-tuple is inserted into Di,s without being dominated, we say that it is a legal insertion.

Lemma 2. When a 2-tuple 〈k, j〉 is to be inserted into Di,s , at most one 2-tuple in Di,s needs to be checked whether the insertion is 
legal or not.

Proof. Let Di,s = {〈k1, j1〉, 〈k2, j2〉, . . . , 〈kq, jq〉}, where q = |Di,s| and k1 < k2 < · · · < kq . Suppose that kh < k < kh+1, where 
0 ≤ h ≤ q and assume that k0 = −∞ and kq+1 = ∞. Because of the domination property in Di,s , we have j1 > j2 > · · · > jh . 
kh is the largest number less than k. If 〈kh, jh〉 does not dominate 〈k, j〉 ( jh > j), then any other element of Di,s cannot 
dominate 〈k, j〉. At this moment, 〈k, j〉 can be inserted into Di,s legally. On the other hand, if 〈kh, jh〉 dominates 〈k, j〉, then 
〈k, j〉 cannot be inserted. Therefore, at most one 2-tuple in Di,s needs to be checked when 〈k, j〉 is to be inserted into 
Di,s . �

Dominate involves two operations, insertion and deletion. Suppose that an element 〈k, j〉 is to be inserted into Di,s , 
which is extended from Di−1,s−1. According to Lemma 2, we can use Predecessor(Di,s, ai) to find the largest element 
kh that is less than k, and then check whether the insertion of 〈k, j〉 is legal or not. If the insertion is legal, then we 
perform the deletion operation to remove those elements in Di,s dominated by 〈k, j〉. The deletion can be done by using 
Successor(Di,s, k) to find the smallest element that is greater than ai , say it is 〈k1, j1〉. If 〈k, j〉 dominates 〈k1, j1〉, then 
〈k1, j1〉 is deleted. Repeat the deletion procedure until no dominated element remains in Di,s .

For example, suppose D = {〈1, 5〉, 〈3, 4〉, 〈5, 2〉}. Suppose that 〈2, 3〉 is to be inserted into D . We get
Dominate(D, {〈2, 3〉}) = {〈1, 5〉, 〈2, 3〉, 〈5, 2〉}, since 〈3, 4〉 is dominated by 〈2, 3〉.

With the Extend and Dominate functions, the LCIS problem can be solved by calculating Di,s sequentially. The pseudo 
code of our LCIS algorithm is shown in Algorithm 1.

The main loop (containing lines 4 through 15) constructs Di,s with the row-major scheme, as shown in Table 3. In round 
r (in line 4), it scans A sequentially starting from ar to construct sets Dr,1, Dr+1,2, Dr+2,3, · · · , Di,s until the set cannot 
be constructed. Then, the maximum CIS length can be obtained in this round. In lines 5 and 6, we terminate the LCIS 
algorithm when L > m − r, because the maximally possible CIS length of round r is m − r + 1. Thus, in round r + 1, the 
maximum length will be no more than the current L. Line 9 extends Di−1,s−1 with one element ai in A, which determined 
by Predecessor(Di−1,s−1, ai). At most one 2-tuple is produced in W = {〈k, j〉}. Lines 10 and 11 check W and Di−1,s , so 
we may terminate this round if both W and Di−1,s are empty. Line 12 invokes Predecessor(Di−1,s, W ) for insertion and 
Successor(Di−1,s, W ) for removing the dominated 2-tuples in Di−1,s . Lines 14 and 15 store the maximum value of s (the 
maximum CIS length in this round) to L.

Lemma 3. Each 2-tuple 〈k, j〉 belongs to at most one Di,s in each round r, where r ≤ i ≤ L + r − 1 and 1 ≤ s ≤ L.
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Algorithm 1 Computing the LCIS length.
Input: Sequences A = 〈a1, a2, a3, . . . , am〉 and B = 〈b1, b2, b3, . . . , bn〉, m ≤ n
Output: Length of LC I S(A, B)

1: Construct next B � next symbol in B
2: Set Di,0 = {〈0, 0〉} for 0 ≤ i ≤ m
3: L ← 0
4: for r = 1 → m do � round r
5: if L > m − r then � round r > m − L
6: break
7: for s = 1 → m − r + 1 do
8: i ← r + s − 1
9: W ← Extend(Di−1,s−1) � decided by Predecessor(Di−1,s−1, ai )

10: if (Di−1,s ∪ W ) = ∅ then
11: break � go to 14

12: Di,s ← Dominate(Di−1,s, W ) � decided by Predecessor(Di−1,s , W )
13: � for insertion and Successor(Di−1,s , W ) for deletion

14: if s > L then
15: L ← s
16: return L

Proof. Suppose that 〈k1, j1〉 ∈ Di,s and 〈k2, j2〉 ∈ Di+1,s+1, where k1 = k2 and j1 = j2. If 〈k2, j2〉 is extended from 〈x, y〉 ∈
Di,s , where x < k2 and y < j2. It means that 〈k1, j1〉 is dominated by 〈x, y〉. So, 〈k1, j1〉 cannot be in Di,s . Therefore, the 
lemma holds. �

The following is obviously true due to the definition of a dominating set.

Property 1. The number of 2-tuples 〈kh, jh〉 in a dominating set Di,s where 1 ≤ s ≤ L is at most n.

Lemma 4. The number of 2-tuples 〈k, j〉 in a round is at most n.

Proof. Suppose there exist n +1 2-tuples in a round which are 〈k1, j1〉, 〈k2, j2〉, · · · , 〈kn, jn〉, 〈kn+1, jn+1〉. Since jh represents 
a position index of B , 1 ≤ h ≤ n + 1, |B| = n, there must exist jx = jx′ , for 1 ≤ x, x′ ≤ n + 1. Then, 〈kx, jx〉 = 〈kx′ , jx′ 〉. These 
two identical 2-tuples cannot be in the same dominating set, and they cannot belong to different dominating sets in a round 
by Lemma 3. So the number of 2-tuples in a round is at most n. �

With Lemma 4, we obtain the following space complexity, since the memory space can be reused in different rounds.

Theorem 1. Algorithm 1 solves the LCIS problem with O (n) space.

The Extend function is shown in Function 1. next B is used to find the index of the first match element ai in B after 
〈kh, jh〉. If we extend successfully 〈kh, jh〉 to another 2-tuple 〈k, j〉, then it is true that j ≤ n. According to Lemma 3, we use 
Boolean array AlreadyExist to check whether j already exists or not. AlreadyExist is initialized to false for each j when 
we start a new round. The Boolean array AlreadyExist can reduce the execution time practically when the algorithm is 
implemented.

Function 1 The extension of Di−1,s−1.
Input: Di−1,s−1, a global Boolean array AlreadyExist
Output: W = {〈k, j〉}
1: function Extend(Di−1,s−1)
2: 〈kh, jh〉← Predecessor(Di−1,s−1, ai)

3: if 〈kh, jh〉 �= null then
4: k ← ai

5: j ← nextB (ai , jh) � next match ai in B after position jh

6: if j = null or AlreadyExist[ j] = true then
7: Return
8: Update AlreadyExist[ j] ← true
9: return W = {〈k, j〉}

10: end function

The Dominate function is shown in Function 2. Dominate inserts a 2-tuple and deletes the dominated 2-tuples. We 
invoke Predecessor to check if 〈k, j〉 is dominated. Successor is used to check if other 2-tuples in Di,s are dominated by 
〈k, j〉.
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Function 2 The domination of Di−1,s and W .
Input: Di−1,s and W = {〈k, j〉}
Output: Di,s

1: function Dominate(Di−1,s , W )
2: Di,s ← Di−1,s

3: 〈kh, jh〉← Predecessor(Di,s, k)

4: if 〈kh, jh〉 = null or jh > j then
5: Insert 〈k, j〉 into Di,s

6: while 〈kx, jx〉 ← Successor(Di,s, k) �= null do
7: if jx > j then
8: Delete 〈kx, jx〉 from Di,s

9: else
10: break
11: end while
12: return Di,s

13: end function

Theorem 2. Algorithm 1 solves the LCIS problem in O (next B + L(m − L)n) time, where O (next B) is the time for building the next B
table.

Proof. By Lemmas 1 and 2, Algorithm 1 is correct. The preprocessing stage (line 1) constructs next B . The outer loop in lines 
4 through 15 is executed exactly (m − L) times (The outer loop breaks when r > m − L). The inner loop in lines 7 through 
13 is executed at most L times. Therefore, there are at most L(m − L) extensions. It is obvious that there are at most 
L(m − L) insertions by Lemma 2. And then, the number of deletions is also at most L(m − L). According to Lemma 3, each 
round has at most n distinct 2-tuples. So, each insertion or each deletion requires O (n) time. Thus, the time complexity is 
O (next B + L(m − L)n). �

It is worthwhile to mention that the Extend and Dominate functions utilize a linear scan scheme to accomplish the job. 
Thus, each Extend or Dominate requires linear time. Furthermore, it can be reduced if we implement these two functions 
with the efficient data structure, the van Emde Boas (vEB) tree [21].

For D1,s, D2,s, D3,s . . . , Dm−L,s , we use a van Emde Boas tree (vEB tree) Ts to store the elements in Di,s , 1 ≤ i ≤ m − L. In 
other words, in the progress of the algorithm, the answers of the same s-length of CIS are stored in the same tree Ts . Thus, 
we build L vEB trees.

Each operation of insertion, deletion, predecessor or successor in a vEB tree requires O (log log |�|) time [21], since the 
number of distinct keys in Di,s is at most |�|.

When we extend 〈kh, jh〉 to another 2-tuple 〈k, j〉, to find out 〈k, j〉 efficiently, we build the nextB table with vEB trees. In 
the table, next B(β, jh) = j denotes the next position of character β in B after position jh . We build |�| vEB trees, each for 
one symbol. Each symbol with its occurrence positions in B is stored in a vEB tree. Therefore, we use Successor(next B, jh)

to search the j with O (log log |�|) time. So, it takes O (L(m − L) log log |�|) time totally in searching next B .
The preprocessing stage takes O (n log log |�|) time to construct nextB . Each Extend or Dominate can be done in 

O (log log |�|) time. Thus, the time complexity is reduced to O ((n + L(m − L)) log log |�|). We summarize the result in 
the following theorem.

Theorem 3. Algorithm 1 solves the LCIS problem in O ((n + L(m − L)) log log |�|) time.

4. Experimental results

In this section, we perform some simulation experiments on pseudorandom sequences with various lengths to illustrate 
the time efficiency of our LCIS and LCWIS algorithms. We compare the execution time of our algorithm and some previously 
published algorithms. Each experiment is repeated 100 times with different input sequences to get the average execution 
time. These algorithms are implemented by Code::Blocks 16.01 C++ software, and they are tested on a computer with 64-bit 
Windows 7 OS, CPU clock rate of 3.20GHZ (Intel(R) Core(TM) i5-4570 CPU) and 16 GB of RAM.

4.1. The longest common increasing subsequence

The experiments concentrate on the relationship of execution time and LCIS lengths. Both algorithms of Sakai [13] and 
Cai et al. [17] are space-efficient with O (n) space. However, the performances of these two algorithms are close to the 
DP-based algorithms of Yang et al. [12]. Therefore, we do not test the algorithms of Sakai [13] and Cai et al. [17] in these 
experiments.

In our experiments, we compare the performance of the following LCIS algorithms:

• Yang: The DP algorithm of Yang et al. [12],
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Fig. 1. The execution time for the LCIS algorithms with various parameter values. Here, “not disp.” means that the execution time goes beyond the scope of 
the figure.

• Brodal: The algorithm proposed by Brodal [14],
• Chan1: The sparse DP algorithm of Chan et al. by using binary search [16],
• Chan2: The sparse DP algorithm of Chan et al. by using sequential search [16],
• Ours: Our algorithm presented in this paper.

We generate various pseudorandom datasets to test the relationship between the LCIS length and execution time in 
our experiments. These pseudorandom datasets are generated or mutated by the pseudorandom function of C++, but we 
manually change some sequences. If the datasets are generated fully randomly, it is almost impossible to generate the 
sequences with extremely large LCIS lengths. We omit the details of the data generation procedure here.

Fig. 1 shows the execution time of these algorithms. We use a 5-tuple (|A|, |B|, |�|, LC I S_length, algo) to represent 
the parameters in each performance chart. For example, in Fig. 1a, (1000, 1000, 1000, ∗, ∗) means that |A| = m = 1000, 
|B| = n = 1000, alphabet size |�| = 1000, the first “∗” is a wildcard representing all possible LCIS lengths and the second 
“∗” is a wildcard representing all possible algorithms. Figs. 1a and 1b illustrate the execution time of various LCIS algorithms 
for |B| = 1000 and |B| = 10000, respectively, with |�| = 1000. Figs. 1c and 1d illustrate the execution time of various LCIS 
algorithms for |B| = 2000 and |B| = 10000, respectively, with |�| = 256.

It is obviously that DP algorithm of Yang et al. takes more time than other algorithms. The sparse DP algorithm of Chan 
et al. has two versions, both of them depend on the number of match pairs. When the number of match pairs is small, the 
sparse DP algorithm of Chan et al. is efficient. We perform the algorithm of Brodal et al. with that a segment tree is utilized 
to execute the range minimum query. The algorithm of Brodal et al. is fast when the LCIS length is small. Our method is 
also fast when L is close to m.
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Table 4
An example for the LCWIS algorithm modified from Yang et al., where A = 〈2, 2, 1, 1, 1〉 and 
B = 〈1, 2, 2, 1, 1〉. Here, the second value in each cell denotes the position index of B .

1 2 2 1 1
2 L1,2[1] = 2,2 L1,3[1] = 2,2 L1,4[1] = 2,2 L1,5[1] = 2,2

2 L2,2[1] = 2,2 L2,3[1] = 2,2 L2,4[1] = 2,2 L2,5[1] = 2,2
L2,3[2] = 2,3 L2,4[2] = 2,3 L2,5[2] = 2,3

1 L3,1[1] = 1,1 L3,2[1] = 1,1 L3,3[1] = 1,1 L3,4[1] = 1,1 L3,5[1] = 1,1
L3,3[2] = 2,3 L3,4[2] = 2,3 L3,5[2] = 2,3

1 L4,1[1] = 1,1 L4,2[1] = 1,1 L4,3[1] = 1,1 L4,4[1] = 1,1 L4,5[1] = 1,1
L4,3[2] = 2,3 L4,4[2] = 1,4 L4,5[2] = 1,4

1 L5,1[1] = 1,1 L5,2[1] = 1,1 L5,3[1] = 1,1 L5,4[1] = 1,1 L5,5[1] = 1,1
L5,3[2] = 2,3 L5,4[2] = 1,4 L5,5[2] = 1,4

L5,5[3] = 1,5

Fig. 2. The execution time for the LCWIS algorithms with various parameter values.

4.2. The longest common weakly increasing subsequence

We modify the LCIS algorithms to solve the LCWIS problem. For our algorithm and an algorithm of Brodal et al., it can be 
easily modified by replacing < with ≤. For the DP algorithm of Yang et al., we can record additionally each match position 
of B , as shown with the underline in the example of Table 4. With the match positions, the length extension can be done 
correctly. For the sparse DP algorithms of Chan et al., we have to modify the order of match pairs from the descending 
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order of j and then i, to become the ascending order of i and then j. It avoids to be dominated directly when we insert it 
into a tree. We test all experiments with different small alphabet sizes. The sparse DP algorithm of Chan et al. takes more 
time, since there are lots of match pairs.

Fig. 2a shows the execution time of the above LCWIS algorithms with |A| = m = 1000, |B| = n = 1000, |�| = 1000. There 
are many match pairs in our generated LCWIS datasets, so the sparse DP algorithms of Chan et al. take too much time. 
In the following figures, their algorithms are not shown. Figs. 2a and 2b illustrate the execution time for |B| = 1000 and 
|B| = 10000 with |�| = 1000. Figs. 2c and 2d illustrate the execution time for |B| = 1000 and |B| = 2000 with |�| = 256.

5. Conclusion

We propose a diagonal-based algorithm for solving the LCIS problem in O ((n + L(m − L)) log log |�|) time and O (n) space, 
where m, n and L denote the lengths of sequences A, B and the LCIS length, respectively. We perform simulations of our 
algorithm and previously published LCIS algorithms on pseudorandom datasets. The experimental results illustrate that our 
algorithm is faster than other algorithms in most cases, especially when L is close to m

In the future, we also hope that the time complexity can be further improved theoretically. The set find-union has been 
invoked in the incremental suffix maximum query (a special case of range maximum query), and it successfully reduces the 
time complexity theoretically [22]. In our algorithm for the LCIS problem, the predecessor query and the range maximum 
query are equivalent. And, one predecessor query in the vEB tree can be accomplished in O (log log |�|) time. Applying 
the set find-union to this special range maximum query may be a direction for improving the time complexity of an LCIS 
algorithm.

The bit-parallel algorithm is utilized efficiently in other LCS variant problems, such as MLCS and CLCS [23,24]. In the 
future, it may speed up our algorithm or previously published LCIS and LCWIS algorithms with the bit-parallel algorithms.
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