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Abstract. In the time series classification (TSC) problem, the calcu-
lation of the distance of two time series is the kernel issue. One of the
famous methods for the distance calculation is the dynamic time warping
(DTW) with O(n2) time complexity, based on the dynamic programming.
It takes very long time when the data size is large. In order to overcome
the time consuming problem, the dynamic time warping with window
(DTWW) combines the warping window into DTW calculation. This
method reduces the computation time by restricting the number of possi-
ble solutions, so the answer of DTWW may not be the optimal solution.
In this paper, we propose the minimum-first DTW method (MDTW) that
expands the possible solutions in the minimum first order. Our method
not only reduces the required computation time, but also gets the optimal
answer.

Keywords: time series classification · dynamic time warping · dynamic
programming · minimum first order.

1 Introduction

The time series classification (TSC) problem [9, 12, 13] is to determine which
category the given time series belongs to. The TSC problem can usually be
applied in several fields, such as word recognition [2], gesture recognition [6],
robotics [4], finance, and biometrics [14].

There are several measurement skills for solving the TSC problem, such as
the distance methods [11, 18], and the shapelet methods [7, 17]. Taking the dis-
tance method for instance, the idea of Euclidean distance (ED) is direct and
simple [5]. However, it cannot solve the time distortion problem. the dynamic
time warping (DTW) [3] overcomes the time distortion problem and reports the
optimal solution. It is a pity that the time complexity of DTW is O(n2). When
the lengths of input time series are large, the distance calculation with DTW
needs much time.

To improve the computation efficiency of DTW, many dynamic time warping
with window (DTWW) methods [8, 15, 16] have been presented in the past years.
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The main concept of these methods is to avoid some terrible alignments and
then to reduce the unnecessary computations. All these DTWW methods utilize
predefined windows and they face the same issue that the result may not be
optimal since some computations are omitted. We then present the minimum-
first DTW method (MDTW) with an adaptive window which calculates the
minimum first and stops if and only if the optimal result is obtained.

The rest of this paper is organized as follows. Section 2 presents some well-
known DTWW methods. We present our MDTW method in Section 3. Section
4 shows the experimental results that state the efficiency of our method. Finally,
Section 5 concludes the paper and provides some advices for future works.

2 Dynamic Time Warping with Window

DTW is time-consuming since it requires O(n2) time to find the answer. There-
fore, the concept of dynamic time warping with window (DTWW) was proposed
by Itakura [8] in 1975, and Sakoe and Chiba [16] in 1978. Both of their methods
belong to the global constraint. The goal of constraints is to let the warping
path be closer to the diagonal and avoid the undesired path. In the method of
Sakoe and Chiba, assume that the warping windows size is r. Then the path is
only permitted within the width r, i.e. |i− j| < r. The warping path of Itakura’s
algorithm is bounded by two slopes S and 1

S . Sakoe and Chiba used a diagonal
with a fixed width.

The well-known global constraints, proposed by Sakoe with Chiba, Itakura,
and Ratanamahatana with Keogh are shown in Figure 1. It is worth to notice
that white cells are not calculated for time-saving, so the answer may not be
optimal. The spirit of our MDTW method is like DTWW methods. What is in
common among MDTW and DTWW is to reduce calculated cells, but DTWW
restricts the range of calculated cells with predefined windows, while MDTW
changes the calculating order of cells. More specifically, MDTW calculate cells
by the minimum-first order and stops if the optimal answer is obtained. Thus,
the remaining cells can be ignored for time-saving.

3 Our Method

In this Section, we propose our MDTW method which is a method with an
adaptive window that avoids the disadvantage of DTWW. MDTW combines
the concept of dynamic time warping with an adaptive window and gets the
globally optimal answer much faster.

3.1 An Example for Illustrating Our Method

We first give an example to demonstrate our concept in Figure 2. Given two time
series A = {2, 9, 8, 8, 5, 4, 2, 1, 5} and B = {3, 7, 4, 1, 3, 2, 1, 7}, we first initialize
a two-dimensional matrix M to calculate the DTW distance between A and B.



Fig. 1: Three warping windows of DTWW. (a) Sakoe-Chiba band [16], , bounded
by |i− j| < r = 5. (b) Itakura parallelogram [8], bounded by slopes S = −2 and
S = − 1

2 . (c) Ratanamahatana-Keogh band [15].

The top-left (yellow) cell is calculated as the starting point, as shown in Figure
2a.

In the beginning, we expand three adjacent cells from cell M [1, 1], then
we insert these expanded cells, 〈value, row index, column index〉 denoted as
〈MV, i, j〉, into a priority queue Q. Thus, we have Q = {〈3, 2, 2〉, 〈6, 1, 2〉, 〈7, 2, 1〉},
shown as the blue cells in Figure 2b. Next, we pop out the minimal cell from
Q. In Figure 2b, the minimal cell 〈MV, i, j〉 in Q is 〈3, 2, 2〉 (the blue circled
cell). So, M [2, 2] (blue circled) is the next cell to be expanded, and its current
cumulative distance is 3.

In Figure 2c, expanded from M [2, 2] = 3, so get three cells M [3, 2] = 4,
M [2, 3] = 8 and M [3, 3] = 7. After inserting these cells into Q, and we get
Q = {〈4, 3, 2〉, 〈6, 1, 2〉, 〈7, 2, 1〉 〈7, 3, 3〉 〈8, 2, 3〉}. This time, the minimal cell in
Q is 〈4, 3, 2〉 (M [3, 2] = 4). Repeat the procedure until the bottom-right cell is
expanded. In Figures 2b to 2h, the orange cells are the current minima, which
are expanded to blue cells. The circled cells are the next minima and Figure 2i
shows the final result.

1NN-DTW (one nearest neighbor DTW) is one of well-known methods used
in the TSC problem [4, 10]. The straightforward method for 1NN-DTW is to
search the database of time series one by one, and to obtain the time series
having the minimum DTW distance with the query series. In the above example,
the value of M [9, 8] is a new threshold for searching time series. If the current
minimal value exceeds the threshold, we can stop the calculation of the current
time series, even we do not reach the most bottom-right cell. If the distance is
less than the current threshold, the threshold is updated.

3.2 The Irreplaceable Property

This section introduces the irreplaceable property of DTW. Based on this prop-
erty, the value of each expanded cell cannot be updated any more.
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Fig. 2: The expansion steps of our MDTW with two time series A =
{2, 9, 8, 8, 5, 4, 2, 1, 5} and B = {3, 7, 4, 1, 3, 2, 1, 7}.



Theorem 1. If the lattice M for calculating the DTW distance is expanded with
the minimum first order, then the expanded cells already have their cumulative
distances, and their values cannot be replaced afterwards.

Proof. The DP formula for calculating DTW distance with M for A = {a1, a2,
· · · , am}, B = {b1, b2, · · · , bn} is given as follows.

Mi,j =



0 if i = 0 and j = 0,

∞ if i = 0 or j = 0,
and i 6= j,

dis(ai, bj) + min

Mi−1,j
Mi,j−1
Mi−1,j−1

if 1 ≤ i ≤ m and 1 ≤ j ≤ n.

(1)

It is clear that the value of Mi,j comes from the minimum of Mi−1,j , Mi,j−1
and Mi−1,j−1. Suppose that Mi,j is expanded from Mi−1,j−1. In this situation,
Mi−1,j−1 the minimum of Mi−1,j , Mi,j−1 and Mi−1,j−1, and Mi−1,j−1 is ex-
tracted from the queue before the other two. Accordingly, when Mi−1,j or Mi,j−1
is extracted from the queue, dis(ai, bj)+ Mi−1,j or dis(ai, bj)+ Mi,j−1 cannot
be the answer of Mi,j . In other words, the value of Mi,j cannot be replaced
afterwards.

If Mi,j is expanded from Mi,j−1 or Mi−1,j , it can be proved similarly.

3.3 The Minimum First Order

The pseudo code of our MDTW algorithm is shown in Algorithm 1. The thresh-
old T is set to infinity initially, and it is updated along with the time series one
by one. So, T may become lower and lower or unchanged. If we find the most
similar time series, we can reduce much more calculation in later searches. Based
on Theorem 1, we do not need to initialize the two-dimensional matrix, and we
need only to record the expanded cells instead. We expand the cells until we get
the bottom-right cell or the minimal value in queue Q exceeds T .



Algorithm 1 Minimum first DTW (MDTW)

Input: two time series A, B and threshold T
Output: distance of A and B . if MV > T , then return null
1: i, j = 1
2: MV = |ai − bj | . current minimal value
3: Q = {〈MV, i, j〉} . insert unexpanded cells into queue
4: while T > MV do
5: if (i + 1, j) is not in Q and does not exceed boundary then
6: Insert 〈|ai+1 − bj |+ MV, i + 1, j〉 into Q
7: end if
8: if (i, j + 1) is not in Q and does not exceed boundary then
9: Insert 〈|ai − bj+1|+ MV, i, j + 1〉 into Q

10: end if
11: if (i + 1, j + 1) is not in Q and does not exceed boundary then
12: Insert 〈|ai+1 − bj+1|+ MV, i + 1, j + 1〉 into Q
13: end if
14: if (m,n) in Q then
15: return MV of cell (m,n)
16: end if
17: 〈MV, i, j〉 ← min(Q) . minimal value of MV in Q
18: end while

4 Experimental Results

The computer environment of our experiments is Intel(R) Core(TM) i7-4790
CPU @ 3.6GHz and memory 8GB RAM. The experimental datasets come from
UEA & UCR time series repository [1]. There are totally 85 classes in the repos-
itory, where each of them has its own distinct training set size, testing set size,
time series length and different number of classes. Since they are open datasets,
we omit the detailed description of the datasets.

To improve 1NN-DTW, the concept of threshold T can also be applied. When
the DTW distance of the query series and one target series is calculated, once the
distance exceeds T , we can stop the distance calculation. Here, this improvement
is denoted as TDTW.

Figure 3 shows ratios of the computational time and expanded cells of TDTW
and MDTW compared with the original DTW method with the threshold and
our method MDTW. It is obvious that lines of MDTW are almost lower than the
lines of TDTW. In other words, MDTW gets optimal answer with less computa-
tional time and fewer expanded cells. The ratio of expanded cells for MDTW are
between 0.01 (the best case - Wafer) and 0.85 (the worst case - ShapeletSim),
and most of them are nearly between 0.1 to 0.3. This shows that MDTW expands
fewer cells to get the optimal answer. The average ratio of the computational
time for MDTW is less than 0.3.

It is worth to be discussed in future that our MDTW method beats TDTW in
83 datasets, but takes more time than the original DTW and TDTW in datasets



Phoneme and ShapeletSim. Though we expand fewer cells in both cases, the com-
putational times are longer than the original DTW method. We shall investigate
the features of these two datasets, so that we may improve our MDTW method.
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Fig. 3: The ratios of computational time and expanded cells of TDTW and
MDTW (a) Ratios of execution time. (b) Ratios of expanded cells.

5 Conclusion

In this paper, we propose the minimum-first DTW method (MDTW) for calcu-
lating the DTW distance of two time series. MDTW expands the lattice cells
with the minimum-first order, The computation is like DTW with an adaptive
window. MDTW finds the optimal answer and reduces the computational time.
As the experiment results show, most cases (83/85) in the experimental datasets
require less computational time than the original DTW, and the ratios of ex-
panded cell that we have to calculate are between 0.1 and 0.3.

Our method performs very well on similar but distorted data, because the
warping path is almost along the diagonal direction. However, the performance
of our method in the dataset which falls and rises extremely is bad, because the
DTW distance is large and many cells have to be expanded.

Our method saves much more time for the TSC problem. In the future, dy-
namic adjustment of increment in every turn may be studied, and we may try
to discover more relationships between cells or the method of pruning unneces-
sary cells. Moreover, we may design a measure method to evaluate whether our
method can perform well or not in advance.
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