
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 19, 183-203 (2003) 

183 

Broadcasting on Uni-directional Hypercubes  
and Its Applications* 

 
HUANG-MING HUANG, CHANG-BIAU YANG  

AND KUO-TSUNG TSENG 
Department of Computer Science and Engineering 

National Sun Yat-Sen University 
Kaohsiung, 804 Taiwan 

E-mail: cbyang@cse.nsysu.edu.tw 

 
In this paper, we present three kinds of broadcasting tree for the even dimensional 

uni-directional hypercube (UHC) and its applications (ASCEND/DESCEND algorithms 
and bitonic sorting). For the n-dimensional UHC, under the constant evaluation model, 
one of our all-port broadcasting trees has height n + 1, which is optimal.  Whereas the 

best one of our one-port broadcasting trees needs at most 1
3
4 +n steps 

)6  mod  ()6  mod  ((
2
3

3
4 nnn +− steps exactly). We also propose an all-port fault-tolerant 

broadcasting tree (a family of arc-disjoint spanning trees) whose height is no more than 

.1
2
3 +n At last, we show that the ASCEND/DESCEND algorithms and bitonic sorting 

can be implemented in the UHC with the same complexity as the hypercube under the 
half duplex mode. All of our algorithms can be easily applied to the odd dimensional 
UHC. 
 
Keywords: interconnection network, uni-directional hypercube, broadcasting, fault- 
tolerance, ASCEND/DESCEND 

1. INTRODUCTION 

Among interconnection network topologies, the hypercube [5, 8, 15, 17, 23, 25] has 
been extensively studied because it has many advantages over other topologies, such as 
short diameter, short average distance, simple connection method, ease of routing, node 
symmetry and edge symmetry. In a hypercube, adjacent nodes can communicate with 
each other through the link connecting them. In fact, most existing hypercube 
multiprocessor architectures, such as Caltech/JPL Mark II [26] and NCUBE/10 [21], use 
two uni-directional links to simulate a bi-directional link in the hypercube topology. This 
approach, however, will double the degree of a node, and thus increase the cost and 
difficulty of constructing hypercubes of larger size.   

With the rapid development of computers, how to connect existing computers 
efficiently to provide digital services attracts a lot of attention. Therefore, several 
topologies of Metropolitan Area Networks (MANs), like Manhattan Street Network [19, 
20], HR4-NET [4] and Tree-Net [13], were proposed for use in commercial network 
services. These topologies seem to have a large diameter, long latency delay, or 
deficiency of parallelism. Thus, one might think that the hypercube would be a better 
alternative to MANs. One issue arising from implementing MANs based upon the 
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hypercube with optical fibers is the lack of bi-directional electrical/optical converters.  
Consequently, messages can be transmitted in only one direction.  Although we can use 
two fibers to achieve the goal of bi-directional transmission, this leads to an increased 
hardware cost.   

Based on the above reasons, Chou and Du [6] proposed the uni-directional 
hypercube (UHC). Each link in a hypercube is assigned a fixed direction. The UHC 
preserves the characteristic of small diameter of the hypercube. In addition, they also 
proposed a simple and efficient routing scheme for the UHC. In this paper, we will 
further investigate broadcasting and fault-tolerant broadcasting algorithms for the even 
dimensional UHC.   

This paper is organized as follows. Section 2 describes the UHC and the 
communication model.  We prove that the even dimensional UHC is node symmetric, 
and propose the broadcasting trees in sections 3 and 4. Next, we present our all-port 
fault-tolerant broadcasting tree in section 5. In section 6 we analyze the performance of 
our algorithms. In section 7 we show how to implement the ASCEND/DESCEND 
algorithms and bitonic sorting in the even dimensional UHC. Some concluding remarks 
and remaining problems are given in section 8. 

2. PRELIMINARY 

The n-dimensional hypercube can be modeled as a graph Qn = (V, E) with 2n nodes 
and n2n-1 edges. Each node represents a processor (or processing unit) and each edge 
represents a communication link between a pair of processors. Fig. 1 shows the 
4-dimensional hypercube if we ignore the hat symbols and link directions. Note that two 
nodes are linked if and only if their identifiers differ by exactly one bit position. (Nodes 
are assigned binary numbers from 0 to 2n – 1 as identifiers.) Port i of node v represents 
the link which connects v with the node whose identifier differs from v in the ith bit. Note 
that the rightmost bit position is 0.   

The n-dimensional uni-directional hypercube  (n-UHC) is an orientation of Qn; that 
is, each edge Qn is assigned a fixed direction, either incoming or outgoing. The direction 
of each edge is assigned according to the following polarity function [6]: 

 

Fig. 1. The 4-diemensional uni-direction hypercube. 
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polarity (B, i) = sign of (− 1)(bn-1+bn-2+ …+b1+b0+i), 

where B = (bn-1bn-2 …b1b0) is the binary representation of the identifier of a node in the 
UHC, and i represents the port number.       

If the polarity function is positive, port i is an out-port of node B; otherwise, port i is 
an in-port. Out-port (in-port) i of node v may be either port 2i or port 2i + 1, depending 
on which one is the out-port (in-port). For example, Fig. 1 shows the 4-dimensional 
uni-direction hypercube (4-UHC) in which the link from 0000 to 0100 is out-port 1 (port 
2) of 0000, in-port 1 of 0100. 

For convenience we denote a node with hat symbols to represent its out-ports, such 

as 00̂00̂  which means ports 1 and 3 are the out-ports of 0000. The superdimension j of 
node v, denoted SDj(v), is comprised of bits 2j + 1 and 2j of v together with their 

polarities. For instance, .0̂1)1̂11̂00̂10̂0(2 =SD  We can denote node S by 

,,...,, 21
22

jsss nn −−〈  ,,..., 01 〉ss where sj is the superdimension j of node S and contains two 

bits. js  denotes the result of complementing the out-port bit of sj and exchanging the 

polarity of these two bits. For example, 00̂=js  has out-port ,0̂  and .0̂1=js  

The UHC discussed above is also referred to as the positive UHC. By graph duality, 
there is another class of uni-directional hypercubes (referred as the negative UHC) with 
the opposite polarity function [6]: 

polarity (B, i) = sign of (− 1)(bn-1+bn-2+ …+b1+b0+i+1). 

In fact, there is no difference between the positive UHC and the negative UHC, 
except for their link directions.  Therefore, in the rest of the paper when we refer to 
UHC, we mean positive UHC, except where specifically pointed out.   

Although the degree of n-UHC is equal to only a half of Qn’s degree, the diameter of 
n-UHC is only n + 1 when n is even, and n + 2 when n is odd. An n-UHC can be 
decomposed into a positive (n − 1)-UHC and a negative (n − 1)-UHC [6]. 

When a processor can communicate with all of its ports concurrently, we call it 
all-port communication. If a processor can only send and receive on one of its ports at 
any time, and the ports on which a processor sends and receives can be different [16], it is 
called one-port communication.   

In this paper we adopt the model of communication cost proposed by Fraigniaud [11, 
12].  The time T required for sending a message from one processor to one of its 
neighboring processors is assumed to be the sum of a start-up time β and a propagation 
time Lτ proportional to the length of messages L (1/τ is the bandwidth), i.e. T = β + Lτ. 
This evaluation model is said to be linear.  If T = 1, it is called the constant evaluation 
model.  The constant evaluation model is used in most published papers.  The authors 
of those papers, however, did not consider that the length of messages would play an 
important role in the communication cost.  If the transmitted message is long, it may 
dominate the communication cost.   
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3. BROADCASTING TREES 

Before we present our broadcasting trees, we shall first prove that an n-UHC is node 
symmetric if n is even. A graph is node symmetric if, given any two nodes v1 and v2, there 
exists an automorphism θ such that θ(v1) = v2 [3]. If a graph is node symmetric, then it 
looks the same from every node in the graph.  Thus, the routing and broadcasting 
algorithms for the network need not be modified for change of starting node.  First, we 
define the operation lrot(x) (or rrot(x)) as rotating the binary representation of x with its 

polarity one bit to the left (right).  For example, .ˆˆ)ˆˆ( 30120123 bbbbbbbblrot =  

Theorem 1. An even dimensional UHC is a node symmetric graph. 

Proof: Given any two nodes u = (un-1un-2…u1u0) and v = (vn-1vn-2…v1v0) in n-UHC, n is 
even, we define the mapping θ : V → V as 





⊕⊕
⊕⊕

=
vulrotxlrot

vux
x

)()(
)(θ  

),0,()0,( if

),0,()0,( if

vpolarityupolarity

vpolarityupolarity

≠
=

 

where ⊕ is an exclusive-or operation.   

We can define an inverse function θ ′: V → V as 





⊕⊕
⊕⊕

=′
))((

)(
vulrotxrrot

vux
xθ  

),0,()0,( if

),0,()0,( if

vpolarityupolarity

vpolarityupolarity

≠
=

 

It is clear that ,))(( xx =′ θθ  and therefore θ is bijective. If there exists a link (x, y) 
in n-UHC, it implies x and y differ in one bit position. Thus θ(x) and θ(y) also differ in 
one bit position; in other words, there exists a link between θ(x) and θ(y). Next, we shall 
examine the direction of the link.  If polarity(u, 0) = polarity(v, 0), the number of 1’s in 
u and v will both be either even or odd. As a result, the number of 1’s in u ⊕ v is even, 
and the directions of each port of x and θ(x) are the same. Consider the case that 
polarity(u, 0) ≠ polarity(v, 0). Suppose x and y differ at bit position i, then θ(x) and θ(y) 
will differ at bit position i + 1 (mod n). In addition, the number of 1’s in lrot(u) ⊕ v is 
odd. Thus port i + 1 (mod n) in θ(x) and θ(y) will have the same direction as port i in x 
and y.  Hence θ is a graph automorphism because any arc (x, y) in n-UHC implies the 
existence of arc (θ(x), θ(y)) in n-UHC. Therefore an even dimensional UHC is node 
symmetric.                                                             � 

In addition to the node symmetry property, there is another property which is 
important for our subsequent algorithms. When we exchange bits 2i and 2i + 1 of one 
node along with their polarities, node )ˆ...ˆ...ˆ( 0121221 bbbbbb iinn +−−  becomes ...ˆ( 12 −− nn bb  

)ˆˆ
10122 bbbb ii K+ and node )ˆ...ˆ...ˆ( 0121221 bbbbbb iinn +−−  becomes ...ˆ...ˆ( 12212 +−− iinn bbbb ).ˆ

10bb  

 
Lemma 2. In an even dimensional positive UHC, if we exchange bits 2i and 2i + 1 along 
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with their polarities in all node identifiers, for all ,0 2
ni ≤≤  the resulting graph is an 

even dimensional negative UHC.  

Proof: If we exchange every pair of bits 2i and 2i + 1 along with their polarities, the 
polarity function will become that of a negative UHC. Thus the resulting graph is a 
negative UHC.                                                          � 

 
A naive way to broadcast a message is to send a message along a broadcasting tree 

rooted at the source node. However, the performance depends highly upon the choice of 
the broadcasting tree.  We propose three different broadcasting trees based on the 
one-port and all-port schemes.       

In most interconnection networks, the divide-and-conquer strategy is usually used to 
construct broadcasting trees. In our first broadcasting tree, denoted n-BT1, an n-UHC is 
recursively divided into four (n − 2)-UHCs. (Only the even dimensional UHCs are node 
symmetric.)  The message in the source node is first transmitted to the sub-root of each 
(n − 2)-UHC; this sub-root becomes a source  node in the (n − 2)-UHC. Then this 
method is applied recursively. In n-BT1, without loss of generality, we assume that the 
source node is (00bn-3… b1b0), and we use the leftmost two bits of identifiers to divide an 
n-UHC.  The sub-roots in the four (n − 2)-UHCs are identified as 00, 01, 11 and 10, 
which represent the difference in the leftmost two bits between the sub-roots and the 
source node. Because the source node is embedded in a cycle of length four via its ports n 
− 1 and n − 2, and each node in the cycle is in a distinct (n − 2)-UHC, the message can be 
broadcast to the nodes in the cycle via the leftmost out-ports of these nodes.  To be 
precise, the message is sent via the path 13013013 ...1̂1()...10̂()...0̂0( bbbbbbbb nnn −−− →→  

)...01̂() 0130 bbbb n−→ to the sub-roots. And, the tree can be recursively constructed.  For 
example, the graph shown in Fig. 2 is 4-BT1 rooted at .0̂00̂0  Note that the distance 
between the root and the farthest sub-root is 3. The precise construction for n-BT1 will be 
given in the next section. 

 
Fig. 2. 4-BT1 rooted at ).0̂00̂0(  



HUANG-MING HUANG, CHANG-BIAU YANG AND KUO-TSUNG TSENG 

 

188  

 

To improve n-BT1, we have to reduce the distance between the root and the farthest 
sub-root. In n-BT1, we use a cycle to transmit messages to the sub-roots of the other three 
(n − 2)-UHCs. We construct the second broadcasting tree, denoted as n-BT2, which uses 
two paths to transmit messages to the other sub-roots. In n-BT2, the source 

)...0̂00̂0( 015 bbbn− sends the message via two paths )...00̂10̂()...0̂00̂0( 015015 bbbbbb nn −− →  

)...0̂01̂1( 015 bbbn−→ and )....1̂00̂1()...10̂00̂()....0̂00̂0( 015015015 bbbbbbbbb nnn −−− →→ The 

subcube 10xn-3…x1x0 does not receive messages from node )...1100( 015 bbbn− any more. 

Instead it receives messages from (0001bn-5…b1b0).  Hence the distance between the 
root and the farthest sub-root is reduced to 2, which is shorter than that of BT1. The 
smallest BT2 to show construction recursion is 6-BT2, which is shown in Fig. 3. 

 

Fig. 3. 6-BT2 rooted at ).0̂00̂00̂0(  

Theorem 3. The height of n-BT1 is ,2
3 n and that of n-BT2 is n + 1, where n is even.  

 
Proof: Let H1(n) and H2(n) denote the heights of n-BT1 and n-BT2, respectively.  
Obviously, it takes three steps to get from the root node to the sub-root 01̂  in n-BT1. 
Hence, we can derive a recursive function for BT1, H1(n) = H1(n − 2) + 3, n ≥ 4, with 
H1(2) = 3. Thus, .)( 2

3
1 nnH =  In n-BT2, the distance between the root and the farthest 

sub-root is 2. Hence, the recursive function is H2(n) = H2(n − 2) + 2, n ≥ 4, with H2(2) = 3. 
The result is that H2(n) = n + 1.                                              

 
Corollary 4. For all-port communication in n-UHC, the broadcasting time steps required 
for BT1 and BT2 are n2

3  and n + 1, respectively, where n is even.  
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Corollary 5. For all-port communication in n-UHC, BT2 is optimal.  
 

Proof: Because the diameter of n-UHC is n + 1, it is impossible to construct a tree with 
height less than n + 1. Thus, for all-port communication with the constant evaluation 
model, BT2 is optimal.                                                    � 

 
Theorem 6. For one-port communication in n-UHC, the broadcasting time steps required 
for either BT1 or BT2 is n2

3  where n is even. 

 
Proof: For one-port communication, we consider the order of the message transmission. 
In both BT1 and BT2, messages are sent first through the highest out-port (i.e., the 
out-port with the largest port number), since there are more nodes in the subtree 

connecting the highest out-port. BT1 takes 3 steps from the source to the sub-root .01̂  

Thus, sub-root 01̂  begins to broadcast at step 4. The other sub-roots 1̂1 and 10̂ ,0̂0  
begin to broadcast in each of their subcubes at steps 2, 3 and 4, respectively. Therefore, 
we have the recursive function T(n) = T(n − 2) + 3 with T(2) = 3. The result is 

.)( 2
3 nnT =  In BT2, no matter how we arrange the order of message transmission, the 

root needs at least three steps to send messages to all of the other three sub-roots. Thus, 
the number of broadcasting steps in BT2 is equal to that of BT1.                   � 

 
As an example, the number associated with each link in Fig. 3 is the time schedule 

in 6-BT2 for one-port communication.   
For one-port communication, we can construct a more efficient broadcasting tree, 

which we denote n-BT3. 6-BT3 is shown in Fig. 4.  In the figure, we prune node (101111) 
and glue it as a child of node (111111). If the message is propagated in the order of the 
subscripts associated with the links, it takes only eight steps to finish one-port 
broadcasting.  As a result, instead of dividing an n-UHC into four (n − 2)-UHCs as in 
BT1 and BT2, we now recursively divide an n-UHC into 64 (n − 6)-UHCs in BT3. The 
root broadcasts the message to the sub-roots using 6-BT3 as a base. If each subcube 
cannot be further divided into 64 units (i.e., each subcube contains less than 64 nodes), 
we use BT1 to broadcast the message in each of the small subcubes. The number of time 
steps in one-port broadcasting required for BT3 can be reduced. However, the method of 
construction is more complicated. 
 
Theorem 7. For one-port communication in n-UHC, the broadcasting time steps required 
for BT3 are ),6 mod ())6 mod (( 2

3
3
4 nnn +− where n is even.  

 
Proof: Let T(n) denote the time steps required for broadcasting in n-UHC using BT3. If n 
is a multiple of 6, we have the recursive function T(n) = T(n − 6) + 8, n > 6 and T(6) = 8. 
Thus, we obtain the result .)( 3

4 nnT =  For the case that n is not a multiple of 6, if each 

subcube cannot be further divided into 64 smaller cubes, we use BT1 to accomplish the 
broadcast.  The recursive function is now generalized as follows: T(n) = T(n − 6) + 8, n 
> 6, with T(2) = 3, T(4) = 3, and T(6) = 8. Thus it needs )6 mod ())6 mod (( 2

3
3
4 nnn +−  

steps.                                                                  
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 Fig. 4. 6-BT3 rooted at ).0̂00̂00̂0(  

4. CONSTRUCTION ALGORITHMS FOR 
THE BROADCASTING TREES 

In this section, we present the distributed construction algorithms for the 
broadcasting trees proposed in the previous section.   

In BT1 a cycle of length four is used as the backbone to distribute the message from 
the source node to the sub-root of each subcube. Thus, an n-UHC is recursively divided 
into four (n − 2)-UHCs, and BT1 can be recursively constructed. In BT2 we use two 
disjoint paths as the broadcast backbone. The recursion procedure is the same as that of 
BT1. However, the tree height in BT2 is reduced. BT3 is constructed in a purely artificial 
manner. We first construct the broadcasting tree 6-BT3 for 6-UHC as shown in Fig. 4. 
Then, we use 6-BT3 as a backbone in the construction recursion. Hence, in BT3 an 
n-UHC is recursively divided into 64 (n − 6)-UHCs. If a subcube contains less than 64 
nodes, BT1 construction is applied.  

BT1 is a very simple structure.  Without loss of generality we assume the root is the 
node with all bits being zero. We can easily define a children function to generate all 
children of a node in BT1 as follows. 
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where l is the first superdimension, scanning from right to left, that is not 00̂  or .0̂0  
Note that the rightmost superdimension is 0.   

BT2 is much more complicated than BT1, but first, we shall present some 
characteristics of BT2.  

 
Proposition 1. In BT2, there does not exist a path v0e0v1e1 … ek-1vk such that ei, ei+1 and 
ei+2, are out-port j of vi, vi+1 and vi+2, respectively, with j ≠ 0.  

 
Proposition 2. In BT2, if node u receives a message from in-port i, and its parent receives 
one from in-port j, where j ≥ i + 2, then node u should send the message to each out-port 
k, k ≤ i + 1. 

For example, consider Fig. 3. Node (010010) is connected with its parent via in-port 
0, while its parent is connected with its grandparent via in-port 2. Thus the children of 
node (010010) are connected with it via out-ports 1 and 0.   

 
Proposition 3. In BT2, node k is a leaf if and only if the last three arcs of the path from 
the root to node k use in-port 0 of the last three nodes. 

For example, (111101), (111111) and (111110) are connected with their parents via 
in-port 0. 

For BT2, messages in an n-UHC should be sent to each (n − 2)-UHC in two steps 
except those in 2-UHCs. Hence, a message can be broadcast with a tag which informs the 
children where the message was from. The algorithm is as follows.   

 
Algorithm 1. Distributed BT2 construction algorithm 

if the current node is the source node then 
send the message with 

2
ntag =  to all out-ports 

else 
receive a message from in-port i 
if tag > i + 1 then 

send the message with tag = i to out-port j, ∀ 0 ≤ j ≤ i + 1 
else if tag = − 1 

stop 
else if i = 0 then 

set tag = tag − 1 
send the message with tag to out-port 0 

else if tag ≤ i then 
send the message with tag = i to out-port j, ∀ 0 ≤ j ≤ i − 1 

else if tag = i + 1 
send the message with tag = i to out-port j, ∀ 0 ≤ j ≤ i         
end 

end 
end 

 
Note that in this algorithm, the identifier of the source node is no longer needed. The 

tag, in fact, takes the place of the source identifier. Therefore, in comparison with the 
broadcasting algorithm in hypercubes, this algorithm does not need any extra field 
encapsulated in the message. 



HUANG-MING HUANG, CHANG-BIAU YANG AND KUO-TSUNG TSENG 

 

192  

 

For instance, )0̂00̂00̂0(  sends the message with tag = 3 to )00̂10̂00̂( ),00̂00̂10̂(  and 

)00̂00̂10̂(  ).10̂00̂00̂( receives this message on in-port 2, and then relays it with tag = 2 to 

).0̂10̂01̂0( and )0̂00̂11̂0( ),0̂00̂01̂1(  When )0̂10̂01̂0(  receives the message with tag = 2 

on in-port 0, it relays the message via out-ports 1 and 0 with tag = 0.   
Since n-BT3 is based on 6-BT3, we split the binary representation of a node into 

several sections, each containing 6 bits, except the rightmost section, i.e., section 0. 
Again we assume that the root is (0 … 0). Each node contains a table describing the basic 
information of a 6-BT3, which is extracted from Fig. 4.  Given a node in 6-BT3, the table 
suggests to which out-port the node should begin sending the message.  If the current 
node is the root, it sends the message via all of its out-ports.  If a node receives a 
message from other node, the algorithm for this node is as follows:   

 
Algorithm 2. Distributed BT3 construction algorithm 

receive a message from in-port i     
scan the binary representation from right to left; find the first 

section k whose content is not zero 
if (k ≠ 0) or (n mod 6 = 0) then 

look up the construction table of 6-BT3 with the content of section k to find out 
to which out-port j it should start sending the message 

if k ≠ 0 then       
send the message to out-port l, 

∀ 0 ≤ l ≤ j + 3(k − 1) + (n mod 6)/2 
else         

send the message to out-port l, ∀0 ≤ l ≤ j + 3k 
else 

use the content of section k to send the message according 
to the construction algorithm for BT1 

end 
end 

 

For example, )0̂00̂01̂00̂1( can be split into two sections, ,0̂0 and 0̂01̂00̂1  see Fig. 4.  

0̂01̂00̂1 sends the message via out-ports 1 and 0. Hence )0̂00̂01̂00̂1( should send the 

message via out-ports 2, 1 and 0. By Lemma 2 either the construction table of the positive 
UHC or that of the negative UHC is sufficient for the needs in both cases. When we 
consult the table, the polarity should be consistent. Consider another 

example ).0̂01̂10̂01̂0( Its first section is .1̂10̂01̂0 Since, the polarity of 1̂10̂01̂0 is 

negative, 11̂00̂01̂ rather than 1̂10̂01̂0 should be used to look up the table. 
After we discuss broadcasting in even dimensional UHC, we shall describe how to 

broadcast in odd dimensional UHC. An n-UHC can be decomposed into a positive (n − 
1)-UHC and a negative (n − 1)-UHC. Thus we can divide an odd dimensional n-UHC by 
bit n − 1. If port n − 1 of the source node v is an out-port, the source node sends the 
message to v ⊕ 2n-1; otherwise, it sends the message via the path (v → v ⊕ 2n-2 → v ⊕ 
(2n-1 + 2n-2)). Then we can apply the broadcasting trees of the even dimensional UHC in 
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previous sections to broadcast. The cost of these algorithms will increase one step if port 
n − 1 of the source node is an out-port, or increase two steps otherwise. 

5. FAULT-TOLERANT BROADCASTING TREES 

As the number of components in a distributed system increases, the probability that 
some components work incorrectly cannot be neglected. In this paper we consider both 
link failures and processor failures. A link or a processor is faulty if it cannot transmit any 
message. Note that in our model, a processor or a link either transmits or does not 
transmit messages; in other words, it does not corrupt messages. All faults are assumed to 
be permanent (or at least are considered to be permanent during the whole execution of 
the communication algorithm).   

A graph (digraph) G is said to have fault tolerance k if, when as many as k arbitrary 
nodes are deleted from G, the resulting subgraph is still connected (strongly connected) 
[2].  An algorithm for communicating in a digraph D(V, A) can tolerate f faults if and 
only if each data element can be routed through at least f + 1 node-disjoint paths from its 
source to its destination [11]. 

It has been proven by Edmonds [10] that every digraph possesses as many 
arc-disjoint spanning trees rooted at any node as the arc-connectivity of the digraph.  
Here, for a digraph D = (V, A), arc-connectivity represents the minimum number of 
elements in an arc set A' such that D' = (V, A − A') is not a strongly connected digraph. It 
is clear that the arc-connectivity of an n-UHC is at most ,

2
n where n is even. Thus n-UHC 

has at most 
2
n  arc-disjoint spanning trees (ADST) rooted at any node. In this section we 

propose an explicit construction of 
2
n  arc-disjoint spanning trees in an n-UHC, where n 

is even. This family of trees is denoted n-ADST. Also, we identify each spanning tree by 
the out-port number from where it is derived. For example, the right subtree in 4-ADST 
in Fig. 5 is called subtree 0.   

 

Fig. 5. 4-ADST rooted at ).0̂00̂0(  
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Our ADST is based on BT1. Without loss of generality, let node (0 … 0) be the root. 

To begin, we show how to construct subtree ,1
2

−n which is very similar to BT1, except 

that some nodes change the connecting positions in the tree. The root first sends the 

message via the path ).0001̂()001̂1()0100̂()000̂0( LLLL →→→  Then nodes 100̂(  

)001̂1( ),0 LL and )0001̂( L serve as the roots of the subcubes (01xn-3 … x1x0), (11xn-3 … 

x1x0) and (10xn-3 … x1x0), respectively. These three nodes; in turn, broadcast the message 

as in BT1. Finally, each node with identifier )...01̂( 013 xxxn− or )...1̂0( 013 xxxn− sends the 

message via its out-port .1
2

−n  Subtree j, ,20
2

−≤≤ nj can be obtained by rotating the 

identifiers of the nodes in subtree 1
2

−n right by n − 2j − 2 bits. For example, the tree in 

Fig. 6 is subtree 1 of 6-ADST. 

 

Fig. 6. Subtree 1 of 6-ADST rooted at ).0̂00̂00̂0(  

For a given node i in subtree j, let l be the first superdimension position in the 

sequence 1,...1,0,1,...,2,1
2

−−++ jjj n such that }.0̂0 ,00̂{)( ∉iSDl  If there does not exist 

such a superdimension position, we set l = − 1.  For instance, suppose that n = 10 and j = 

2. For ),11̂00̂01̂00̂00̂( and )00̂00̂01̂00̂11̂( we have l = 4 and l = 0, respectively. Thus the 

children of node i in subtree j are given by 
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Lemma 8. The n/2 subtrees in an n-ADST graph are arc-disjoint, for even n.   
 
Proof: By definition, subtree 12 −n of n-ADST is based on n-BT1. Subtree j, 0 ≤ j ≤ 

,22 −n can be obtained by rotating the identifiers of the nodes in subtree 12 −n right by n 

− 2j − 2 bits. So, it is clear that the n/2 subtrees in n-ADST graph are arc-disjoint.     � 
 

Lemma 9. In subtree j of n-ADST, for n even, the nodes in },0̂0,00̂{)(SD|{ ∈=′ vvV j  

where v is not the root} are all leaves.  
 
Proof: It is obvious by the construction method. Without the last step, the subtree does 

not contain any node v such that }.0̂0 ,00̂{)( ∈vSD j  In the last step, every node in V' 

will attach a node u such that }.1̂0 ,01̂{)( ∈uSD j Therefore the nodes in V' are all leaves.� 

Theorem 10. Two paths between the source and any other node in two subtrees of the 
n-ADST, for n even, are node-disjoint. 
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Proof: We shall prove this theorem by contradiction. Let Pj(x) denote the node set {v1, 
v2, …, vk} such that the path (s → v1 → v2 → …→ vk → x) is a path from the source s to 
node x in subtree j. Suppose that .,)()( jixPxP ji ≠≠∩ φ  Let ∩∈〉〈= − )(... 01

2
xPyyy in  

).(xPj Without loss of generality, one can assume .1
2

−= nj  Since y ∈ Pi(x) ∩ Pj(x), y is 
a nonleaf node in both subtree i and subtree .1

2
−n  From Lemma 9, 1

2
−ny and yi ∉ 

}.0̂0 ,00̂{  Let r and t be the first superdimension such that yr and }0̂0 ,00̂{∉ty counted 
cyclically left to right from superdimension 0 and superdimension i + 1, respectively. 
From our construction algorithm, i ≥ r ≥ 0 and ,1

2
+≥> itn because 1

2
−ny and yi ∉ 

}.0̂0 ,00̂{ Consequently, the descendants of y in subtree 1
2

−n  differ from y only in the 
superdimensions which range from r to 0; the descendants of y in subtree i differ from y 
only in the superdimensions which range from t to i. However, these two intervals [0, r] 
and [i, t] are disjoint. Node y has no descendant in both subtree 1

2
−n  and subtree i, and 

thus, node y is a leaf node. This contradicts that y is a nonleaf node. Therefore, there is no 
such node y and Pi(x) ∩ Pj(x) = φ.                                           � 
 

From the above two theorems, we have the following corollary:  
 

Corollary 11. The fault tolerance of n-UHC is ,1
2

−n for even n. 
 

Theorem 12. The height of n-ADST is ,2/)4mod(
2
3 nn + for even n. 

 
Proof: Since every subtree of n-ADST is of the same height, we consider only subtree 

.1
2

−n  Without the last step, the height of subtree 1
2

−n is the same as BT1. Using the 
same reasoning as in Lemma 9, the last step increases the height of the tree by only 1. Let 
x be the node at level n

2
3 (the level of root is 0). If n is not a multiple of 4, ,01̂)(0 =xSD  

because the distance from the root to x is odd and x is the descendant of ).10̂0...0(  Thus 
the height of n-ADST is 1

2
3 +n  when n is not a multiple of 4. Similarly, if n is a 

multiple of 4, then ,0̂1)(0 =xSD  and the height of n-ADST is .
2
3 n                 � 

In our n-ADST, no link appears more than once in all spanning trees. However, at 
every step, each processor may appear more than once in all spanning trees. In other 
words, some processors are required to have a multiple-port communication capability or 
at least a buffering capability when multiple-port communication is encountered.   

6. PERFORMANCE ANALYSIS 

Let h denote the height of a broadcasting tree. The cost of sending a message of 
length L under all-port communication is h(β + Lτ). In the case of long messages, we can 
use the pipeline technique proposed by many researchers [11, 12, 16, 24] to speed up 
broadcasting under all-port communication. First, we cut the message into L/B packets of 
size B. The message can then be sent one packet after another into the pipeline.  The 
broadcasting time is h(β + Bτ) for the first packet to reach the farthest node, plus (L/B − 1) 

(β + Bτ) for the remaining packets. This gives a total time of ).)(1( τβ Bh
B
L −+−  

Minimizing the total time by selecting the packet size, we get the minimum time 
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2))1(( τβ Lh +−  when .
)1( τ

β
−

=
h

L
B    

Now we consider all-port fault-tolerant broadcasting. Let f denote the number of 
faults in n-UHC. If f = n/2 − 1, the message is duplicated n/2 times, and each copy is sent 

through one subtree in n-ADST. The time complexity is ),)(1(
2

4mod
2
3

τβ Bn
B
Ln ++−+  

where n is even and B is the packet size. If f < n/2 − 1, we cut the message into n/2 blocks, 
M0, M1, …, Mn/2-1.  Each subtree j transmits the message, which is the composition of 
blocks Mk, ∀k ∈ {j, j + 1, …, (j + f) mod (n/2)}. If there is no fault, each node can receive 
f + 1 copies of the original message, because each block is transmitted via f + 1 subtrees. 
Thus each node can receive at least one copy of the message if there are f faults. Since 
each subtree transmits a message of length 2(f + 1)L/n, the time required for the algorithm 

becomes ).)(1( )1(2
2

4mod
2
3

τβ Bn
nB

Lfn ++−+ +  

If we do not consider the fault-tolerant tree, the formula discussed above is still valid 
in the one-port communication, except that the term h should be replaced by the total start 
up time needed. Table 1 is a summary of the time complexities of our broadcasting trees. 

Table 1. Time complexities of broadcasting in n-UHC. 

 

7. APPLICATIONS OF UHC 

In this section, we will present ASCEND/DESCEND algorithms on the UHC. These 
algorithms are based on one-port communication, and do not possess fault-tolerant 
ability.  

The ASCEND/DESCEND algorithms [22] are two classes of parallel algorithms 
which are derived from the divide-and-conquer paradigm. Assume that input data δ0, 
δ1, …, δn-1 are stored, respectively, in storage locations T[0], T[1], …, T[n − 1], and the 
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number of inputs is a power of 2 (i.e., n = 2k). An algorithm is in the ASCEND 
(DESCEND) class if it performs a sequence of basic operations on pairs of data that are 
successively 20, 21, …, 2k-1 (2k-1, 2k-2, …, 20) locations apart. Each basic operation 
OPER(m, j; U, V) modifies the two data items stored in locations U and V; the 
computation performed affects only the contents of U, V and may depend upon 
parameters m and j, where 0 ≤ m ≤ n − 1, 0 ≤ j ≤ k − 1. Algorithms in the ASCEND class 
can then be specified as follows: 

 
Algorithm 3.  ASCEND 

for j = 0 to k − 1 do 
for each m, 0 ≤ m ≤ n − 1, do in parallel 

if the jth bit of m is 0 then 
OPER(m, j; T[m], T[m ⊕ 2j]) 

end 

For some applications, such as bitonic merge and cyclic shift, the corresponding 
algorithms are directly within the ASCEND or DESCEND class. Other applications (such 
as permutation, shuffle, unshuffle, bit-reversal, odd-even merge, Fast Fourier Transform, 
convolution, matrix transposition) have programs consisting of a short sequence of 
algorithms in these two classes. As for applications such as bitonic sort, odd-even merge 
sort, and calculations of symmetric functions, they are the combination of the two results 
of a recursive call which is in the two classes. 

It is quite easy to implement ASCEND/DESCEND algorithms in hypercubes, since, 
by the definition of a link in a hypercube, two nodes u and v are adjacent if and only if u 
⊕ v = 2j, i.e., |u − v| = 2j, 0 ≤ j ≤ k − 1. Let δm denote the original data stored in node m, 
and let j

mδ  denote the data stored in node m after the completion of iteration j − 1 (note 
that j is counted from 0). The for statement in the ASCEND algorithm can be replaced 
by: 

 
for each node m, 0 ≤ m ≤ n − 1, do in parallel 
  send j

mδ  to node m ⊕ 2j 
  receive j

m j2⊕
δ  from node m ⊕ 2j 

   OPER (m, j; ),
2

j
m

j
m j⊕

δδ  
 

In the UHC, each send or receive in the above algorithm takes three steps to 
accomplish. It is not efficient for the UHC to perform the algorithms of the hypercube. 
Therefore we have to modify it to suit the UHC. 

Since nodes m and m ⊕ 2j cannot directly communicate with each other in the UHC, 
we combine two iterations, say 2j and 2j + 1, of the original algorithm. Here we assume n 
is even. Let v0 be a node whose port 2j is an out-port, and v1 = v0 ⊕ 22j, v2 = v0 ⊕ 22j+1 and 
v3 = v0 ⊕ (22j + 22j+1). As illustrated in Fig. 7, nodes v0 and v3 send j

v
2

0
δ and j

v
2

3
δ to nodes v1 

and v2, respectively. Then v1 and v2 perform the operation ),;2,(OPER 22
1 10

j
v

j
vjv δδ and 

),,;2,(OPER 22

2 32

j

v

j

v
jv δδ respectively. After the operations, nodes v1 and v2 send 

12

0

+j
vδ and 12

3

+j
v

δ to v2 and v1. Thus nodes v1 and v2 can perform the operations OPER 

),,;12,(OPER and ),;12,( 1212
2

1212
1 2031

++++ ++ j
v

j
v

j
v

j
v jvjv δδδδ respectively. Finally, nodes v1 
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and v2 send )1(2
3

+j
vδ and )1(2

0

+j
vδ back to v3 and v0, respectively. Two iterations in the 

ASCEND algorithm can therefore be done by using four communication steps. Observing 
the ASCEND/DESCEND algorithms under the hypercube with the half duplex mode, we 
see that both use 4 communication steps within two iterations.   

 

Fig. 7. Iteration 2j and 2 j + 1 of the ASCEND algorithm in the UHC. 

Algorithm 4. ASCEND for the even dimensional UHC 

 for j = 0 to 1
2

−k  do 

  for each node m, 0 ≤ m < n, do in parallel 
   if port 2j is an out-port then 

    send j
m
2δ to node jm 22⊕  

    receive 12

)22( 122

+

+⊕ +

j

m jj
δ from node 122 +⊕ jm  

    send 12
)22( 122

+
+⊕ +

j
m jjδ to node jm 22⊕  

    receive )1(2 +j
mδ from node 122 +⊕ jm  

   else 

    receive j
m j
2

22⊕
δ from node jm 22⊕  

    ),;2,(OPER 2
2

2
2

j
m

j
m jjm

⊕
δδ  

    send 12
22

+
⊕
j

m jδ to node 122 +⊕ jm  

    receive 12
2 12

+
⊕ +
j

m jδ from node jm 22⊕  

    ),;12,(OPER 12
122

12 +
+⊕

++ j
jm

j
mjm δδ  

    send )1(2
2 12
+

⊕ +
j

m jδ to node 122 +⊕ jm  

   end 
end 
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If simultaneous send and receive operations are allowed, we can transmit the 

messages within 3 steps. Each node m performs the three operations ,;2,(
2 j
mjmOPER δ  

).,;12,( OPER and ),,;2,2( ), 12
2

122
)22(

2
2

122
2 12122122

+
⊕

+
+⊕⊕

+
⊕ +++ +⊕ j

m
j

m
j

m
j

mj
jj

m jjjjj jmmOPER δδδδδ

This method needs three communication steps and three operations with two iterations.  
From the above description, we find that the BT1 algorithm described in the previous 

section is one example of the DESCEND algorithm. 
In the following we use bitonic sorting to illustrate the ASCEND/DESCEND 

algorithms. Bitonic sorting is a combination of several DESCEND algorithm calls. Given a 
sequence of 2k data elements, which are stored in T[0], T[1], …, T[2k – 1], this algorithm is   

Algorithm 5. Bitonic Sorting 
for i = 0 to k − 1 do 

for j = i down to 0 do 
for each m, 0 ≤ m ≤ n − 1, do in parallel 

if the jth bit of m is 0 then 
if T[m] > T[m ⊕ 2 j] then 

exchange T[m] and T[m ⊕ 2j] 
else  

if T[m] < T[m ⊕ 2 j] then 
exchange T[m] and T[m ⊕ 2 j] 

end 

In the original ASCEND/DESCEND algorithms, the number of iterations is even, 
while that of the inner loop of bitonic sorting may be either odd or even. If the number of 
iterations is odd, the DESCEND algorithm cannot be directly applied. As a result, we 
have to add an iteration to the inner loop when the number of iterations is odd, i.e., when 
i is even in Algorithm 5. This added iteration is used only for data transmission, and thus, 
we do not perform the comparison and exchange operations in the iteration. Our resulting 
bitonic sorting for the UHC is as follows.  
 
Algorithm 6. Bitonic Sorting for the UHC 

for i = 0 to k − 1 do 
for j = (i/2) to 0 do 

for each m, 0 ≤ m ≤ n − 1, do in parallel 
if port 2j + 1 is an out-port then 

send δm to node m ⊕ 22j+1 
receive δm⊕(2

2j
 + 2

2j+1
) from node m ⊕ 22j 

send δm⊕(2
2j

 + 2
2j+1

) to node m⊕22j+1 
receive δm from node m⊕22j 

else 
receive δm⊕22j+1 from node m⊕22j+1 

if (i is odd or j ≠ (i/2) then 
if ((the (2j +1)th bit of m is 0) and (δm > δm⊕22j+1)) or 
((the (2j +1)th bit of m is 1) and (δm < δm⊕22j+1)) then 

exchange δm and δm⊕22j+1 



BROADCASTING ON UNI-DIRECTIONAL HYPERCUBES 

 

201

 

send δm⊕22j+1 to node m⊕22j 
receive δm⊕2

j from node m ⊕ 22j+1 
if ((the (2j)th bit of m is 0) and (δm > δm⊕22j)) or 
((the (2j)th bit of m is 1) and (δm < δm⊕22j) then 

exchange δm and δm⊕2
2j 

send δm⊕2j to node m ⊕ 2j 
end  

end 

8. CONCLUSIONS 

In this paper we present three kinds of broadcasting tree for the even dimensional 
uni-directional hypercube (UHC) and some applications. In the constant evaluation 
model, our all-port broadcasting tree BT2, which requires n + 1 steps, is optimal. The best 
one of our one-port broadcasting trees, BT3, needs )6 mod ()6 mod ( 2

3
3
4 nnn +− steps. Our 

algorithms can be easily applied to an odd dimensional UHC. We also propose an all-port 
fault-tolerant broadcasting tree whose height is 2

4 mod 
2
3 nn + . Lastly, we show that the 

ASCEND/DESCEND algorithms can be implemented in the UHC with the same time 
complexity as the hypercube under the half duplex mode. 

Given any node v in n-UHC, where n is even, let V' = {u| the distance between u and 
v is n + 1.}. Then, obviously, |V'| ≥ 2 if n ≥ 4. Hence, the lower bound on the number of 
steps needed in one-port broadcasting is greater than or equal to n + 2, i.e., d + 1, where d 
is the diameter of the UHC. As a result, we do not know if our best one-port broadcasting 
algorithm is optimal. Since the height of n-BT2 is only n + 1, can the height

2
4mod

2
3 nn +  

of n-ADST be improved? Our ADST requires that some processors are cabable of 
multi-port communication. We are trying to figure out if it is possible to find a scheduling 
discipline which allows one-port fault-tolerant broadcasting in our n-ADST. These 
problems are worthy of further investigation. 

Many interconnection networks have been proposed over the years, such as star 
graphs [1, 7, 14] and de Bruijn graphs [9, 18], and they are claimed to have shorter 
diameter or higher fault tolerance than hypercubes.  One drawback with them, however, 
is the difficulty of designing parallel programs on these networks. That is why they 
cannot compete with the hypercube. ASCEND/DESCEND algorithms represent the 
solution of many practical problems, and it is very easy to implement 
ASCEND/DESCEND algorithms on hypercubes.  On the other hand, some computer 
engineers think the high degree of each node in a hypercube makes it difficult to 
construct larger networks. With a degree that is only half that of the hypercube’s, and the 
ease of implementing ASCEND/DESCEND algorithms, the UHC is an attractive 
alternative to the hypercube.   
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