
Disulfide Bond Prediction with Hybrid Models∗

Chong-Jie Wang, Chang-Biau Yang† and Chiou-Yi Hor
Department of Computer Science and Engineering

National Sun Yat-sen University, Kaohsiung 80424, Taiwan
†Email: cbyang@cse.nsysu.edu.tw

Kuo-Tsung Tseng‡
Department of Information Management

Fooyin University, Kaohsiung 83102, Taiwan
‡Email: ft051@mail.fy.edu.tw

Abstract—Disulfide bonds are special covalent cross links
between two cysteines in a protein. This kind of bonding state
plays an important role in protein folding and stabilization. For
connectivity pattern prediction, it is a very difficult problem
because of the fast growth of possible patterns with respect to
the number of cysteines. For the prediction, in this paper, we
propose a hybrid approach based on support vector machine
(SVM). With this approach, we can improve the prediction
accuracies by selecting appropriate models. In order to evaluate
the performance of our method, we apply the method with 4-fold
cross-validation on SP39 dataset, which contains 446 proteins.
We achieve accuracies with 70.8% and 65.9% for pair-wise and
pattern-wise prediction respectively, which is better than the
previous works.

Keywords— disulfide bond, cysteines, hybrid model, SVM,
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I. INTRODUCTION

A disulfide bond, also called SS-bond or SS-bridge in
chemistry, is a covalent cross-link formed by coupling two
thiol groups. It plays an important role in protein folding
process. In addition, it has a great help to stabilize the
3D structure of a protein because it imposes geometrical
constraints on the protein backbones. Although there are two
kinds of amino acids belonging to thiol groups, however,
only cysteines can make up disulfide bonds. According to this
property, it becomes easier to do the task of the predicting
disulfide bonds.

Among disulfide bonding researches, the connectivity pre-
diction problem[15] has been an intensively studied. Its main
purpose is to find out the disulfide bonded pairs among all
possible candidates in a protein. This work is often divided into
two parts: pair-wise and pattern-wise. The former one aims to
find the bonded probabilities among all possible pairs while
the latter one manages to determine the unique connectivity
pattern. For the pattern-wise version, it is difficult to get an
exactly correct solution because the connectivity patterns grow
rapidly with respect to the number of cysteines in a protein.
Suppose that a protein contains M disulfide bridges, it means
that at least 2M cysteines are contained in the protein. Since
two cysteines form a pair, the number N of all possible pairs
can be determined by the following formula:

N = C2M
2 = M(2M − 1). (1)
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Moreover, the number P of all possible connectivity patterns
is given as follows:

P = (2M − 1)(2M − 3)(2M − 5) · · · 1 = (2M − 1)!! (2)

For example, we get P = 945 for M = 5, and we get P =
10395 when M = 6. Clearly, P grows up rapidly with the
increase of M . Therefore, the prediction work of connectivity
patterns is not so easy.

In most of recent researches, SVM (support vector machine)
models have become popular to be built for classification or
prediction [4, 5, 8, 9, 12–14, 17, 18]. In 2005, Tsai et al.[17]
achieved an accuracy of 63% with SVM. In 2009, Chung
[6] combined the down-sampling scheme with SVM to get
the accuracy of 70%. And in the same year, Zhu et al.[19]
presented an algorithm with the help of feature selection and
they achieved the accuracy of 80%.

In this paper, we propose an approach for predicting the
connectivity pattern of disulfide bonds in a target protein. In
this problem, we are given a target protein whose cysteine
bonded states (oxidized or reduced) are known. We build
hybrid SVM models for prediction. Our feature set include
PSSM, secondary structure, and some other features. To test
our work, we apply SP39 dataset, which contains 446 proteins
with bonded size ranging from 2 to 5. We perform the 4-fold
cross-validation, which was also adopted by Chung’s work
[6]. We achieve accuracies with 70.8% and 65.9% for pair-
wise and pattern-wise, and improve 0.7% and 2.4% compared
with Chung’s work, respectively.

The rest of this paper is organized as follows. In Section
II, we will introduce some preliminary knowledge about
this study. In Section III, we will present our method to
the problem. Section IV shows the experimental results and
compares them with some previous results. Finally, Section V
gives a conclusion and some possible future works.

II. PRELIMINARY

In this section, we give an introduction to support vector
machine, position-specific score matrix and secondary struc-
ture, which serves as background knowledge of our prediction
method. We also review some methods for disulfide bond
prediction in previous studies.

A. Position-Specific Score Matrix

Position-specific scoring matrix (PSSM) is a special scoring
matrix in bioinformatics. It is calculated by the sequence



alignment method in order to get the score of each kind of
amino acid in each position within a protein. The sequence
alignment manages to determine the similarities between the
target sequence and the sequences in the queried database.
Consequently, it can find the homogeneous sequences with
highest similarity, and summarize the information from ho-
mogeneity among the queried sequences.

To get PSSM, there are two widely-used tools: BLAST (ba-
sic local alignment search tool)[1] and PSI-BLAST (position-
specific iterated-BALST)[2]. BLAST is an algorithm for query-
ing a protein or DNA sequence. With the database specified,
it can find the sequences similar to the target sequence by
the similarity score function. PSI-BLAST uses the result of
BLAST as input to run BLAST iteratively, so it is more
sensitive than BLAST to locate distantly homogeneous family.

The PSSM is calculated by PSI-BLAST. The score of each
entry in it represents the occurrence frequency of one residue.
If one score is higher than other scores in a row, it means
that it is more common for this residue in this position in the
homogeneous homology family.

B. Secondary Structure

In biochemistry and structural biology, the secondary struc-
ture is defined as the interaction of hydrogen bonds between
residues. Various hydrogen bonding states exhibit distinct
structural attributes, and these bonding states may further in-
fluence the three-dimensional structure of a protein. Therefore,
it is usually believed that the secondary structure provides
important information for protein structure prediction.

The secondary structure, as defined in DSSP (Dictionary
of Protein Secondary Structure)[11], includes several types
of hydrogen bonding mode, such as α-helix, β-sheet, 310-
helix, π-helix, etc. Among these types, α-helix and β-sheet are
commonly found, and the others are relatively rare in nature
proteins. In protein sequences, the secondary structures are
roughly categorized into three states: helix, sheet and coil, each
of which is found to have its dominant kinds of amino acids.
Even though, it is still believed to be intractable to predict
secondary structures by means of only the information of an
amino acid sequence.

Many algorithms have been proposed for solving the sec-
ondary structure prediction, such as neural networks, hidden
Markov models, and support vector machines. Among these
methods, one of the most accurate is PSIPRED[10], which is
a tool based on neural networks. It first invokes PSI-BLAST
to locate homogeneous proteins to obtain the evolutionary
information, such as replacements, insertions, and deletions of
an amino acid. After that, the result of PSI-BLAST is served
as input of the neural network to generate prediction results.
The reason of its high accuracy is that it uses PSI-BLAST
to get homology information. Even though, it still works well
without PSI-BLAST.

PSIPRED roughly classifies each residue into three types
of secondary structure (helix, strand and coil), and outputs
the results into three kinds of file (.horiz, .ss and .ss2). The
.horiz file stores the predicted secondary structure type and

the confidence value of the prediction of each amino acid
in a protein. Both .ss and .ss2 files contain probabilities for
the three kinds of secondary structure associated with each
residue. These files contain the predicted secondary structure
and probabilities, belonging to coil, helix and strand states, of
each residue. The total probability of each residue in .ss file
is equal to 1, while that in .ss2 file is not equal to 1. In this
paper, we adopt three probability information from the .ss2
file.

C. Support Vector Machine

Support Vector Machine (SVM), is a machine learning
method. It is widely used in classification and regression
problems. The basic idea is to map the input data into a
higher dimensional space, and create a hyperplane to divide
different groups of samples. Furthermore, after an SVM model
is trained, the class corresponding to a data element can be
predicted by this model.

Assume that xi is a d-dimensional vector (data), and yi is
the label of xi, where yi ∈ {1,−1}. The main purpose of SVM
is to find an optimal decision hyperplane ωTx+ b = 0, where
ωT,x ∈ Rd and b ∈ R. The hyperplane is desired to separate
as many data elements as possible, by maintaining a maximal
margin between the two groups of data. The answers, which
are parameters of the hyperplane, are obtained by solving the
following optimization problem:

{
minimize

1
2
wT w

subject to yi(wT xi + b) ≥ 1 , i = 1 ≤ i ≤ m.
(3)

In the ideal situation, the hyperplane can separate all data
elements perfectly. However, it rarely happens in real worlds.
Consider the case that all kinds of data are mixed and scattered
within a 2-D space, and they could not be separated exactly
by any linear function. It turns out that we may separate them
by curves, not straight lines. To overcome the difficulty, SVM
provides nonlinear kernel functions to map the data into a
higher dimensional space. Then the problem can be solved
with an ordinal linearly separable scheme. In either linear or
nonlinear cases, SVM performs very well in most classification
problems.

In this paper, LIBSVM[3] is employed to perform the
SVC (Support Vector Classification) task. In addition, it also
provides SVR (Support Vector Regression) for regression.
The SVC function can classify a set of data elements with
their probabilities, while the SVR can generate a regression
value for an input data element. These values are helpful
to determine which class is more likely for each data ele-
ment. Furthermore, it provides several kernel functions for
various problems. Because of its outstanding performance and
extensive functionalities, LIBSVM is widely adopted in the
researches on data analysis.

III. ALGORITHMS FOR DISULFIDE BOND PREDICTION

In this section, we present our algorithm for solving the
connectivity prediction problem. We explain how to develop
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our work based on the previous work. We also introduce the
features involved in the prediction.

A. Motivation

In 2009, Chung et al.[6] did well in connectivity prediction
with the down-sampling technique. To further improve the
accuracy, we have to seek some other ways to achieve this
goal. And in 2007, Song et al.[16] suggested that the sec-
ondary structure information also provides good discrimination
capability in connectivity prediction. This motivates us to
consider the possibility to incorporate these two methods.

Since the feature set used in Chung’s work only contains
DOC (distance of cysteines) and PSSM, we may adopt more
features to facilitate the prediction. Furthermore, from the pre-
liminary study, we also find some specific feature sets provide
different predictive capability for different types of proteins.
This also motivates us to develop our method according to
their binding configurations.

Since our goal is to find the pattern combination of the
oxidized cysteines, the oxidized-reduced and reduced-reduced
pairs are assumed to be irrelevant for the training models.
Thus, the oxidized-reduced pairs and reduced-reduced pairs
are removed, then all oxidized-oxidized pairs are involved
for training. Note that only a part of oxidized-oxidized pairs
are included in Chung’s work due to the down-sampling
scheme. Under this circumstance, the number of our training
samples is a little more than that in Chung’s work. Thus, our
trained model is reasonably more sensitive for identifying truly
bonding pairs.

B. Feature Extraction

Our approach is based on Chung’s work [6], thus we adopt
all features used by Chung. Let L, W , Lmax, Wmax, Fc,
Pi and AAx be the length, molecular weight, longest protein
length in the dataset, greatest molecular weight in the dataset,
number of cysteines in a protein, position of the ith cysteine
in a protein and number of the amino acid x in a protein,
respectively. The normalized features are defined as follows:

1) DOC(i, j) (distance of cysteines): This feature repre-
sents the distance of a pair of cysteines in the primary
sequence. This value is normalized as log2(1.0+ Pj−Pi

L ).
2) Cysteine order: This feature shows the order of each

cysteine within all cysteines in a protein. This value is
normalized as i

FC
.

3) Protein weight: The weight is the sum of all residues’
molecular weights in the protein. This value is normal-
ized as W

Wmax
.

4) Protein length: The feature represents the length of
primary sequence of a protein. This value is normalized
as L

Lmax
.

5) Amino acid composition: This value is to show the
occurrence frequency of the amino acid x in a protein.
This value is normalized as AAx

Lmax
.

In additional to the features mentioned above, we also in-
volve PSSM and secondary structure features. The normalized

PSSM is defined as follows:

pij =
pij − pmin

pmax
, (4)

where pij , pmax and pmin denote the score of column j
in row i, the maximum and minimum values in the matrix,
respectively. The secondary structure information is extracted
from the .ss2 file, which is generated by PSIPRED v3.2 [10].

We adopt the window approach to retrieve elements around
a cysteine as our features. Here, the window size 2k + 1 is
set to 13. Table I shows the names and sizes of all features.
In our approach, the training models for the protein with odd
number of oxidized pairs and the protein with even number of
oxidized pairs are distinct. This is because each feature set has
its own strength in the prediction of a unique situation. Their
distinct feature sets are also shown in Table I. For example,
when the window size is 13, the number of features is 521
for the even model, which contains 1 feature for DOC and
13 × 20 × 2 for PSSM, and 623 for the odd model, which
contains 1 for DOC, 1 for length, 1 for weight, 2 for orders,
20 for amino acid composition, 13 × 20 × 2 for PSSM and
13× 3× 2 for secondary structure.

C. Algorithm for Connectivity Prediction

Figure 1 exhibits the flow chart of our work. Our approach
is also described as follows:

Algorithm: Connectivity prediction with a hybrid model
Input: The primary structure information and the bonded

states of cysteines in the target protein, where the
real states (oxidized or reduced) of cystienes and
numbers of disulfide bonds are assumed to be known
in advance.

Output: The connectivity pattern of the target protein.
Step 1: Bonded type determination. Determine whether the

protein is odd or even disulfide-boned. This step
determines which model is selected for prediction.

Step 2: Feature encoding. Encode each possible cysteine
pair of the target protein into the feature vector
according to the selected SVM model.

Step 3:SVM prediction. For each pair of oxidized cysteines,
predict whether they are connected or not with the
selected SVM model. After this step, the connecting
probability of each pair is obtained..

Step 4: Pattern construction. Build an undirected weighted
graph, where each node represents one oxidized cys-
teine and the connecting probability of two cysteines
is the weight of the corresponding edge. Apply the
algorithm for the weighted matching to derive the
connectivity pattern [7].

As we get a target protein (input), we first feed it to
PREPRED and PSI-BLAST to obtain the predicted secondary
structure information and PSSM, respectively. Then we invoke
our algorithm to perform the connectivity prediction (output).
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TABLE I
THE FEATURE SETS USED IN OUR APPROACH.

Feature size Model for odd Model for even
Distance of cysteine 1 Y Y
Cysteine order 2 Y N
Protein weight 1 Y N
Protein length 1 Y N
Amino acid composition 20 Y N
PSSM around cystein (2k + 1)× 20× 2 Y Y
Secondary structure around cystein (2k + 1)× 3× 2 Y NInput sequenceCheck odd or evenEncode the feature set for odd model Encode the feature set for even model Predict with odd-SVM model Predict with even-SVM modelProbabilities of pairsPerform weighted graph matchingPredicted connectivity pattern

odd even

Fig. 1. The flowchart of our work for connectivity prediction.

IV. CONNECTIVITY PREDICTION EXPERIMENTS

In this chapter, we introduce the dataset used in our experi-
ments and then explain how we compute the accuracy. Finally,
we carry out the performance comparison of our work with
others.

A. Dataset

For comparing with other works in connectivity prediction,
we adopt the same dataset that was used by the previous works.
The dataset is given as follows:

SP39: The dataset was derived from SWISS-PROT release
No. 39. This dataset consists of 446 proteins and
the number of disulfide bonds in each protein ranges
from 2 to 5. To compare with Chung’s work [6],
we apply the same way to divide the dataset into
4 subsets for 4-fold cross-validation, in which the
sequence identity between any two subsets is less
than 30%. Moreover, to verify the correctness and
remedy randomness, we also divide this dataset into
4 folds randomly and perform experiments. Totally,
10 different 4-fold cross validations are carried out.

B. Performance Evaluation

We use k-fold cross-validation to evaluate our result. The
dataset D is split into k disjoint subsets D1, D2, . . . , Dk. We
take Di, 1 ≤ i ≤ k, for testing and the other k-1 subsets for
training. This process is repeated k times until all subsets are
tested.

We group the predicted results into 4 categories: TP (true
positive), TN (true negative), FP (false positive), and FN
(false negative). In pair-wise prediction, we adopt Qc as the
performance measure calculated as follows:

Qc =
Pc

Nc
=

TP

TP + FN
, (5)

where Pc denotes the number of bonded pairs that are correctly
predicted and Nc denotes the total bonded pairs in the dataset.

For pattern prediction, we use Qp to evaluate the perfor-
mance. The formula is given as follows:

Qp =
Pp

Np
, (6)

where Pp denotes the number of correctly predicted proteins
and Np denotes the total number of proteins in the dataset.

Finally, we perform k-fold cross-validation and calculate the
average accuracy of all folds, which is presented as follows:

R =
1
k

k∑

i=1

Ri. (7)

where Ri could be Qp or Qc.

C. Experiments of Connectivity Prediction

According to the literature, the down-sampling technique
is usually used to balance the negative samples and positive
samples in the training set so that it prevents the classification
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algorithm from favoring the data associated with the majority
class. In Chung’s work [6], it turns out that the best perfor-
mance is achieved when the ratio between the numbers of
negative and positive samples is 3. The parameter cost C and
gamma γ for SVM training are 2 and 0.125, respectively.

Our initial thought is to develop our method based on
Chung’s work. Since only two feature sets were used in
Chung’s work, it is expected that we can add more useful fea-
tures to achieve better performance. Accordingly, we include
the features that was used in Song’s work, such as distance
of cysteines (D), PSSM (P), cysteine ordering (O), protein
length (L), protein weight (W), amino acid composition (A)
and secondary structure (S). The number of features is 521,
including D and P, in Chung’s work and 623, including D,
L, W, O, A, P and S, in Song’s work. Furthermore, we also
refer to Zhu’s work for feature selection. They suggested that
the best result can be achieved by selecting only 150 features
from those in Song’s work.

We adopt Zhu’s method to select 150 features and per-
form the experiment. Table II show the results obtained with
Chung’s data partition method. And Table III shows the results
of randomly divided folds. Note that both tables employ
the training dataset that is obtained by the down-sampling
technique. The purpose of the experiment using randomly
divided folds shown in Table III is to verify that our work
is correct, since some other previous works also use randomly
divided folds. The results of our experiment indicate that our
performance is as good as the previous works, except for the
result of 150 features in Zhu’s selection. We conclude that
down-sampling is not suitable for this reduced feature subset.

As Table II shows, the result obtained with the D+P feature
set (in the first row) outperforms the other two feature sets. The
effects of adding new features do not gain any improvement.
Instead of adopting the down-sampling scheme, we build
another training dataset, which contains all oxidized-oxidized
pairs and discards other pairs (oxidized-reduced or reduced-
reduced). This is because our aim is to predict disulfide bonds,
one pair formed by at least one reduced cysteine is irrelevant
for the training process. In our new training dataset, the ratios
of negative and positive samples for different bonded sizes
are different. For example, when the bonded sized is 3 (6
cysteines), the number of all possible negative bonded pairs is
C6

2 − 3 = 12. So, the negative-positive ratio is 4. We conduct
another training process, in which the feature sets are the same
as Table II but the positive/negative ratios are adjusted. The
result corresponding to low identity partitions is shown in
Table IV, and the result corresponding to randomly divided
folds is shown in Table V.

The result in Table IV shows that results obtained by
4-fold cross-validation. Because the selected sequences in
distinct folds are low in identity, it is expected that they are
independent mutually. It shows that the accuracies of models
involving either 521 features or 623 features are almost the
same. Although getting elevated in accuracy (compared with
Table II), the model with 150 selected features is still worse
than others, either with the down-sampling scheme or with all

oxidized-oxidized-pair samples.
The results in Table V are obtained from randomly par-

titioned 4-fold cross-validation experiments. It shows that
the overall result associated with 150 selected features is
still slightly worse than other two feature sets. It is not in
accordance with what Zhu suggested that the classification rate
corresponding to 150 features is higher than that associated
with 623 features (the second feature set in the same table).
Because the result derived from the randomly divided folds
is inconsistent with what literatures declare, we thus do not
consider this scheme furthermore. Consequently, we only
focus on the folds divided with sequence identity less than
30%. In addition, because models trained with 150 features
do not perform well in this independent test, we do not list it
in the final comparisons.

By observing the results in Table IV, we find something
interested. The accuracies of even bonded with 521 features
are higher than those with 623 features, while the accuracies
of odd bonded with 623 features are better than those with 521
features. It suggests that the secondary structure information
is more useful in identifying disulfide bonds with odd-number
pairs than those with even-number pairs. Therefore, we pro-
pose a new method which incorporates these two models. That
is, we use the model with 521 features to predict proteins
containing even disulfide bonds and use the other model with
623 features to predict proteins containing odd disulfide bonds.
Table VI shows the result comparison between our hybrid
model and Chung’s work. The new model always adopts the
most prominent model for prediction. Consequently, in most
circumstances, the prediction accuracy is higher.

V. CONCLUSION

Chung [6] proposed the down-sampling scheme for reduc-
ing training samples (including oxidized-oxidized, oxidized-
reduced and reduced-reduced) to get higher accuracy and to
reduce execution time. However, according to our experience,
oxidized-reduced and reduced-reduced pair samples seem to
be irrelevant for connectivity pattern prediction. The connec-
tivity patterns is in fact composed of only oxidized cysteines,
so it seems reasonable not to consider the permutations and
combinations of reduced cysteines.

It should be noted that when training with all samples, one
way to speed up the process is to reduce features. Zhu’s et. al.
[19] select 150 features from original 623 features so that they
make the process faster and achieve better performance. In our
study, we find the selected feature set is not so helpful for the
same dataset which is divided into four nearly independent
folds. That is, the reduced feature set might not be useful in
independent test. To overcome the situation, it would be better
to choose another feature subset.

Song’s et. al.[16] suggested that the predicted secondary
information plays an important role in connectivity prediction.
Hence, it is believed that the more accurate the secondary
structure, the more helpful for disulfide bond prediction. Since
the secondary information is obtained by prediction tools, it
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TABLE II
PREDICTION ACCURACIES WITH THE DOWN-SAMPLING SCHEME.

Feature set B = 2 B = 3 B = 4 B = 5 B = 2 · · · 5
Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc

D + P a 80.8 80.8 57.5 66.2 54.5 70.7 42.2 61.8 63.5 70.1
D + P + L + W + O + A + S 76.9 76.9 54.1 63.5 57.6 67.7 37.8 57.8 61.2 66.8
150 features in Zhu′s work 77.6 77.6 50.7 60.7 38.4 53.8 33.3 51.1 55.6 61.0
a From Chung et al. [6].

TABLE III
PREDICTION ACCURACIES CORRESPONDING TO RANDOMLY DIVIDED FOLDS WITH THE DOWN-SAMPLING SCHEME.

Feature set B = 2 B = 3 B = 4 B = 5 B = 2 · · · 5
Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc

D + P a 87.7 87.7 68.8 75.3 79.9 85.5 50.9 63.6 76.0 79.2
D + P + L + W + O + A + S 87.6 87.6 70.3 76.9 77.1 82.0 51.1 63.1 75.9 78.6
150 features in Zhu′s work 84.4 84.4 67.1 74.2 73.9 80.3 46.0 59.7 72.5 75.9

TABLE IV
PREDICTION ACCURACIES OBTAINED BY THE TRAINING DATASET CONTAINING ALL OXIDIZED-OXIDIZED PAIRS.

Feature set B = 2 B = 3 B = 4 B = 5 B = 2 · · · 5
Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc

D + P 84.0 84.0 53.4 63.7 55.6 66.9 46.7 60.4 63.9 68.7
D + P + L + W + O + A + S 78.8 78.8 60.2 69.2 53.5 64.4 44.4 62.2 63.7 69.1
150 features in Zhu′s selection 78.8 78.8 51.4 62.1 48.5 68.2 33.3 52.9 58.5 64.6

TABLE V
PREDICTION ACCURACIES CORRESPONDING TO RANDOMLY DIVIDED FOLDS OBTAINED BY THE TRAINING DATASET CONTAINING ALL

OXIDIZED-OXIDIZED PAIRS.

Feature set B = 2 B = 3 B = 4 B = 5 B = 2 · · · 5
Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc

D + P 88.5 88.5 72.5 78.8 77.0 82.4 52.0 62.0 77.0 79.8
D + P + L + W + O + A + S 88.9 88.9 70.5 77.5 77.6 82.9 52.2 66.1 76.7 79.8
150 features in Zhu′s selection 86.5 86.5 71.8 76.8 79.2 83.6 49.1 61.4 76.2 78.4

might not guarantee to be fully correct. Consequently, the
provided information might be somewhat limited.

We finally propose a hybrid model in our work. Accord-
ing to different bonding configurations, we construct our
model with different feature sets and parameters for SVM.
We roughly divide the proteins into odd or even bonded.
For an odd-bonded protein, the predicted secondary structure
information is included to build the SVM model. But, the
information is not included for an even-bonded protein. By
this approach, we get better result in the SP39 dataset. In
this sense, sequences under various bonding configurations
may somewhat different in physical or chemical properties.
Consequently, proteins associated with different configurations
may have their individually preferential model for prediction.
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