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Abstract

The longest common subsequence (LCS) problem can be used to measure the relationship between sequences. In general, the
inputs of the LCS problem are two sequences. For finding the relationship between one sequence and a set of sequences, we
cannot apply the traditional LCS algorithms immediately. In this paper, we define the mosaic LCS (MLCS) problem of finding
a mosaic sequence C, composed of repeatable k sequences in source sequence set S, such that the LCS of C and the target
sequence T is maximal. Based on the concept of break points in sequence T , we first propose a divide-and-conquer algorithm with
O(n2m|S| + n3 logk) time for solving this problem, where n and m are the length of T and the maximal length of sequences in S,
respectively. Furthermore, an improved algorithm with O(n(m+ k)|S|) time is proposed by applying an efficient preprocessing for
the MLCS problem.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Dynamic programming; Bioinformatics; Longest common subsequence; Mosaic sequence; Design of algorithms
1. Introduction

The longest common subsequence (LCS) problem
is a classical one in computer science and it has been
widely discussed over three decades [3]. The LCS can
be applied to many areas, such as file comparison,
speech recognition, and especially bioinformatics [2,9].
In bioinformatics, the LCS of a set of sequences can be
regarded as the identity of the input sequences and we
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can reconstruct an alignment based on the LCS. In ad-
dition, the LCS can help us find out the segments with
biological meanings such as motifs, promoters, recep-
tion sites, and conserved regions. In general, the LCS is
used to find the relationship of two sequences. If we de-
sire to know the relationship between one sequence and
a set of sequences, the original LCS algorithms cannot
return the relationship directly and hence a new algo-
rithm should be designed. For example, given a set of
short and meaningful sequences, one wants to find out
the minimum of these short sequences to cover a long
query sequence above a predefined coverage threshold.
Hereby, one can get useful information about the query
sequence of applications such as recognizing the rela-



100 K.-S. Huang et al. / Information Processing Letters 102 (2007) 99–103
tionship between short sequences, locating key features,
and compressing this long sequence.

In this paper, we discuss the mosaic LCS (MLCS)
problem. Given a target sequence T and a set S of
source sequences, the MLCS problem is to find a mosaic
sequence C, composed of repeatable k sequences in S,
such that the LCS of C and T is maximal. It is indiscreet
by using the brute-force strategy to solve this problem.
Based on the concept of break points in sequence T , we
propose an algorithm with O(n2m|S| + n3 logk) time
for solving the MLCS problem, where n, m, and |S| are
the length of T , the maximal length of sequences in S,
and the cardinality of S, respectively. Furthermore, by
applying the S-table information [7,6], we propose an
improved algorithm with O(n(m + k)|S|) time for solv-
ing the problem.

2. Definitions

For a sequence T , over a finite alphabet set Σ ,
a subsequence of T is a sequence obtained from T by
deleting zero or more symbols. The LCS problem is de-
fined as finding the common subsequence T ′ of given
sequences such that T ′ is the longest one among all
possible common subsequences. If the number of in-
put sequences is not fixed, the problem is NP-complete
even over binary alphabets [8]. In general, many re-
searches and applications focus on the LCS problem for
only two input sequences [2,9] and there exist O(n2)

algorithms in the worst case for the LCS problem of
two sequences. For two sequences S1 = agactagtc
and S2 = tagtcacg, sequences agc, agtc, agacg,
agtag, and agtac are some common subsequences
of S1 and S2; in particular, agacg, agtag, and
agtac are all the LCS’s of S1 and S2, denoted as
LCS(S1, S2), with maximal length 5. Note that in this
paper, LCS(S1, S2) may be used to represent either the
length value of LCS(S1, S2) or the string of LCS(S1, S2)

alternatively if there is no ambiguity of its meaning.
Some more notations are given as follows. |S| de-

notes the cardinality or the length of S if S is a set
or a sequence. Substring T [p,q] represents the con-
tiguous segment of T from positions p to q . In addi-
tion, T [p,q] = ∅, the empty string, if p > q . We use
C = C1C2 . . .Ck to represent the mosaic sequence or
the composite sequence composed of Ci ’s, 1 � i � k.
The notation C〈i, j 〉 means the partial contiguous se-
quences of C, i.e., C〈i, j 〉 = CiCi+1Ci+2 . . .Cj−1Cj .
Also, C〈i, j 〉 means an empty sequence if i > j . A bold
symbol or number represents a vector. We suppose the
lengths of T and the longest sequence in S are n and m,
respectively.
The mosaic longest common subsequence (MLCS)
problem is defined as follows. Given a target (query)
sequence T , a mosaic number k, k � 1, and a set of
source sequences S, find a k-mosaic (k-concatenate)
sequence C = C1C2 . . .Ck , Ci ∈ S and 1 � i � k,
such that LCS(T ,C) is maximal. For example, sup-
pose T = agactagtc, k = 3, and S = {S1 = agc,
S2 = act, S3 = aatg, S4 = ttcg}. We can find
C = agc act agc such that LCS(T ,C) = agactagc
with length 8. If k = 4, we can construct another
C = agc act agc ttcg such that LCS(T ,C) =
agactagtc with length 9. We note that if k = 1, the
MLCS problem is to find max{LCS(T ,Si) | Si ∈ S} and
it is equivalent to the traditional sequence searching
problem. In addition, the MLCS problem has better ap-
plications and meanings in the case of m < n.

3. Algorithms

The solution of the MLCS problem can be obtained
clearly by computing LCS(T ,C) = max{LCS(T ,Pi)}
for all |S|k possible mosaic sequences Pi ∈ Sk , where
|Pi | = O(mk). The time complexity of this brute-force
algorithm is O(mnk|S|k) and it is exponential to the
mosaic number k. If the mosaic number k and the car-
dinality of S are large, this algorithm could not obtain
a solution in feasible time. For solving the MLCS prob-
lem more efficiently, we use the break points in T to
improve our algorithm. The essential concept of break
point is included in the divide-and-conquer approach
proposed by Hirschberg for finding the LCS [3].

Lemma 1. [3] Given sequences T and C = C1C2,
we can find a position r in T such that LCS(T ,C) =
LCS(T [1, r],C1) + LCS(T [r + 1, n],C2).

Komatsoulis and Waterman solved a specific version
of the MLCS problem with the restriction of the mo-
saic number k = 2 in O(mn|S|) time [4] by applying
Lemma 1 implicitly. In addition, their algorithm is a
chimeric sequence alignment algorithm with k = 2, and
it supposes that there are two disjoint sets SA and SB ,
where C1 ∈ SA and C2 ∈ SB [4]. Komatsoulis and Wa-
terman applied it to detect chimeric 16S rRNA artifacts
in biology [5]. We can regard the 2-chimeric LCS prob-
lem as to find the best chimeric sequence C = C1C2
such that LCS(T ,C) is maximal where C1 ∈ S and
C2 ∈ S \ {C1}. Based on Lemma 1, we conclude the fol-
lowing results.

Lemma 2. Given a sequence T and a composite se-
quence C with the mosaic number k (k � 2), for



K.-S. Huang et al. / Information Processing Letters 102 (2007) 99–103 101
any k′, 1 � k′ � k, there exists a break point r such
that LCS(T [1, n],C〈1, k〉) = LCS(T [1, r],C〈1, k′〉) +
LCS(T [r + 1, n],C〈k′ + 1, k〉).

Proof. If a composite sequence C is given, C can be
separated into prefix C〈1, k′〉 and suffix C〈k′ + 1, k〉 for
any k′, 1 � k′ � k. It is clear that this lemma holds based
on Lemma 1, the concept of finding the break point in a
divide-and-conquer approach [3]. �
Lemma 3. Given a sequence T , a set S of sequences
and the mosaic number k (k � 2), we can obtain the mo-
saic sequence C = C〈1, k〉 by finding a vector of break
points r = (r0, r1, . . . , rk) such that LCS(T ,C〈1, k〉) =
max{∑k

i=1 (LCS(T [ri−1 + 1, ri],Ci))}, where r0 = 0,
rk = n and Ci ∈ S.

Proof. We can expand LCS(T ,C〈1, k〉) based on Lem-
ma 2 recursively until the base condition of C〈i, j 〉,
“if i = j”, is satisfied. Then we can compute the best
LCS for each segment corresponding to ri in T and
each Ci , which will be the best sequence Sj in S, such
that LCS(T [ri−1 + 1, ri], Sj ) is maximal. �

Hence, we can separate the mosaic sequence recur-
sively and apply the dynamic programming approach
for solving this problem. Let L(l,p, q) denote the best
LCS length of all possible l-mosaic sequences and
T [p,q]. Our dynamic programming algorithm for the
MLCS problem (FOR MOSAic) is presented in Algo-
rithm Formosa1.

Theorem 4. Algorithm Formosa1 solves the MLCS
problem in O(n2m|S| + n3 logk) time.

Proof. Based on Lemmas 2 and 3, we can divide the
problem into subproblems, and then merge small ones
into large ones and the original problem finally. Algo-
rithm Formosa1 computes each L(l,p, q) bottom-up,
which means all possible situations have been consid-
ered. Hence, L(k,1, n) is the maximal LCS length.
Step 1 takes O(log2 k) time to convert k into its bi-
nary representation. Step 2 computes the LCS of each
sequence in S and each substring of T . While fixing Sj

and the p of T [p,q], we can compute LCS(T [p,q], Sj )

in O(mn) time for all p � q � n. There are |S| se-
quences in S and n starting positions p in T . Hence,
Step 2 requires O(n2m|S|) time totally. In Step 3, it re-
quires O(n3 logk) to compute L(2i , p, q) for various
(i,p, q) according to the best break point r . The time
complexity of Step 4 is similar to that of Step 3; the
number k can be represented as a binary string b with
Algorithm Formosa1

Input: A target sequence T , a source sequence set S =
{S1, S2, . . . , S|S|}, and the mosaic number k.

Output: LCS(T ,C) = L(k,1, n), where C = C1C2 . . .Ck is
the best mosaic sequence and Ci ∈ S for 1 � i � k.

Step 1: Calculate the binary representation of k, denoted as
b = bwbw−1 . . . b2b1b0, where w = �log2 k	 and bi ∈
{0,1} for 0 � i � w.

Step 2: Let L(20,p, q) = maxj {LCS(T [p,q], Sj )}, where
1 � p � q � n and 1 � j � |S|.

Step 3: Compute L(2i , p, q) = maxr {L(2i−1,p, r) +
L(2i−1, r + 1, q)}, where 1 � p � r � q � n and
1 � i � �log2 k	.

Step 4: If k 
= 2w , L(b[i,0],p, q) = maxr {L(2i ×bi,p, r)+
L(b[i − 1,0], r + 1, q)}, where 1 � p � r � q � n, 1 �
i � �log2 k	, and b[i,0] denotes the value of the binary
string bibi−1 . . . b0.

Step 5: Return L(k,1, n).

length �log2 k	 and we can compute L(b[i,0],p, q)

by assembling suffix string of b progressively. Step 5
is a simple return in constant time. In summary, the
time complexity of Algorithm Formosa1 is O(n2m|S|+
n3 log k). �

Algorithm Formosa1 computes all small mosaic se-
quences corresponding to every substring of T to as-
semble the final k-mosaic sequence. We now consider
only the prefix string T [1, q] to replace all substrings
T [p,q].

The S-table of two sequences T and X, denoted as
St (T ,X), stores the LCS length of X and each suffix
string T [i, n] of T , 1 � i � n [7,6]. There exist effi-
cient algorithms for finding LCS(T [1, j ],C1C2), 1 �
j � n, while LCS(T [1, i],C1) for 1 � i � n and the
St (T ,C2) are given. Here, we will invoke algorithms
that can merge two preprocessed LCS’s with O(mn)

preprocessing time [7,6] and O(n) time for merging [1,
7]. In addition, algorithm SMAWK [1] is a merging al-
gorithm with linear time but it is a recursive one. Landau
and Ziv-Ukelson proposed a non-recursive merging al-
gorithm for the edit distance problem with the same
complexity [7]. The symbol ⊕ denotes the merging op-
eration of a vector of LCS(T [1, i],C1) and an S-table.
Summarizing the previous results, there is a lemma as
follows [1,7,6].

Lemma 5. [1,7,6] Given a sequence T and a compos-
ite sequence C = C1C2, LCS(T [1, j ],C1), 1 � j � n,
and St (T ,C2) can be obtained in O(mn) time. If
LCS(T [1, j ],C1) and St (T ,C2) are given, LCS(T [1, j ],
C1C2) can be obtained by merging LCS(T [1, j ],C1) ⊕
St (T ,C2) in O(n) time.
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Fig. 1. The detail of calculating V1 ⊕ St (T ,S1).

Let L′(l, j) denote the best of LCS(T [1, j ],C〈1, l〉)
among all l-mosaic sequences and T [1, j ], 1 � l � k

and 1 � j � n. We define a vector Vl = (Vl0,Vl1,Vl2,

. . . , Vlλ), where Vl0 = 0, λ = L′(l, n), and Vli = min{j |
L′(l, j) = i}, 1 � i � λ. We use the function minE( )

to get the minimal value in each position among sev-
eral vectors. For example, minE{(5,1,6), (2,3,4,1),

(2,2,3)} = (2,1,3,1). Our improved algorithm for
solving the MLCS problem by using the S-table is
shown in Algorithm Formosa2.

For example, suppose T = agactagtc, and S =
{S1 = agc, S2 = act, S3 = aatg, S4 = ttcg}. V0 ⊕
St (T ,Si) are (0,1,2,4), (0,1,4,5), (0,1,2,5,7), and
(0,2,7,9) for i = 1,2,3, and 4, respectively. Hence,
V1 = minE{(0,1,2,4), (0,1,4,5), (0,1,2,5,7), (0,2,

7,9)} = (0,1,2,4,7). Fig. 1 shows the detail of cal-
culating V1 ⊕ St (T ,S1), which is (0,1,2,3,4,7,9),
that reflects the best LCS(T [1, j ],C〈1,1〉S1), where
C〈1,1〉 ∈ S. One can check that LCS(T [1, j ],agc agc)

are a, ag, aga, agac, agcag, and agcagc for j =
1,2,3,4,7, and 9, respectively. Then, with similar cal-
culation, we get V2 = minE{(0,1,2,3,4,7,9), (0,1,2,

3,4,5), (0,1,2,3,5,7), (0,1,2,4,5,7,9)} = (0,1,2,

3,4,5,9). Finally, V3 = (0,1,2,3,4,5,6,7,9) and
V4 = (0,1,2,3,4,5,6,7,8,9) can be obtained.

Theorem 6. Algorithm Formosa2 solves the MLCS
problem in O(n(m + k)|S|) time.

Proof. Algorithm Formosa2 is based on Lemmas 5
and 2 with k′ = k − 1 recursively. Each element in Vl

keeps the best LCS(T [1, i],C〈1, l〉) for 1 � i � n and
its corresponding C〈1, l〉. And, L′(k, n) is the best of
LCS(T [1, n],C〈1, k〉) among all possible k-mosaic se-
quences. In other words, L′(k, n) is the MLCS length.
Based on Lemma 5, we can obtain St (T ,Si) while com-
puting LCS(T ,Si) for each Si ∈ S and hence Step 2
requires O(nm|S|) time. Step 3 merges the vector Vl and
Algorithm Formosa2

Input: A target sequence T , a source sequence set S =
{S1, S2, . . . , S|S|}, and the mosaic number k.

Output: LCS(T ,C) = L′(k, n), where C = C1C2 . . .Ck is the
best mosaic sequence and Ci ∈ S for 1 � i � k.

Step 1: Initialize V0 = 0.
Step 2: Compute and store S-table St (T ,Si) for each Si ∈ S.
Step 3: Vl = minE{Vl−1 ⊕ St (T ,Si)} for each Si ∈ S and

1 � l � k.
Step 4: Return L′(k, n).

the S-table of Si , which each merge can be done in O(n)

time for 1 � l � k and 1 � i � |S|, and each minE( )

needs O(n|S|) time. So, Step 3 requires O(nk|S|) time.
In summary, the time complexity of Algorithm For-
mosa2 is O(n(m + k)|S|). �

After Algorithm Formosa2 finishes, it is easy to find
out the MLCS sequence with the tracing back technique
as follows.

Theorem 7. If the k-mosaic sequence C and its cor-
responding break point vector r of T are given, the
sequence of LCS(T ,C) can be obtained in O(mn)

time.

Proof. Based on the break point vector r, we can sep-
arate T into k segments, i.e., T = T1T2 . . . Tk . Each
segment Ti has to consider only its corresponding Ci .
We can use simple dynamic programming formula to
find out the sequence of LCS(Ti,Ci) in O(|Ti ||Ci |)
time. Thus, the time required for all k segment pairs of
(Ti,Ci) is O(|T |m) = O(mn). �

We note that the time complexity of tracing back the
MLCS sequence is lower than both algorithms in this
paper.

4. Conclusion

We define the MLCS problem for finding LCS(T ,C)

of a mosaic sequence C, composed of repeatable k se-
quences in set S of source sequences. Based on the
concept of break points in sequence T , we first pro-
pose a divide-and-conquer algorithm with O(n2m|S| +
n3 logk) time for solving the MLCS problem, where
n and m are the length of T and the maximal length
of sequences in S, respectively. Furthermore, by apply-
ing the S-table, we propose an improved algorithm with
O(n(m + k)|S|) time for solving the problem.

There are still some problems worthy for further
study. One of them is the chimeric LCS problem. The
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chimeric sequence means a composite sequence com-
posed of several independent (not repeatable) sequences
in S. It is a more challenging combinatorial problem
because of the permutation without repetition of the
composite sequence. However, it may be less useful in
biological applications than the mosaic one while k is
large. In addition, one may study the more general mo-
saic alignment problems related to the MLCS problem,
such as generalized score matrices, local alignment and
gap penalty.
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