
Information Processing Letters 105 (2008) 188–193

www.elsevier.com/locate/ipl

Efficient algorithms for finding interleaving relationship
between sequences ✩

Kuo-Si Huang, Chang-Biau Yang ∗, Kuo-Tsung Tseng,
Hsing-Yen Ann, Yung-Hsing Peng

Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

Received 14 February 2007; received in revised form 25 July 2007; accepted 23 August 2007

Available online 12 September 2007

Communicated by L. Boasson

Abstract

The longest common subsequence and sequence alignment problems have been studied extensively and they can be regarded as
the relationship measurement between sequences. However, most of them treat sequences evenly or consider only two sequences.
Recently, with the rise of whole-genome duplication research, the doubly conserved synteny relationship among three sequences
should be considered. It is a brand new model to find a merging way for understanding the interleaving relationship of sequences.
Here, we define the merged LCS problem for measuring the interleaving relationship among three sequences. An O(n3) algorithm
is first proposed for solving the problem, where n is the sequence length. We further discuss the variant version of this problem
with the block information. For the blocked merged LCS problem, we propose an algorithm with time complexity O(n2m), where
m is the number of blocks. An improved O(n2 + nm2) algorithm is further proposed for the same blocked problem.
© 2007 Published by Elsevier B.V.

Keywords: Design of algorithms; Bioinformatics; Dynamic programming; Longest common subsequence; Merged sequence
1. Introduction

A subsequence P of a sequence S, over a finite sym-
bol set Σ , is a sequence obtained from S by deleting
zero or more (not necessarily contiguous) symbols. The
longest common subsequence (LCS) problem is defined
as follows: Given k (k � 2) sequences, find a longest
sequence P such that P is a common subsequence of
these k sequences. If the number of input sequences,

✩ This research work was partially supported by the National Sci-
ence Council of Taiwan under NSC-94-2213-E-110-051.

* Corresponding author.
E-mail address: cbyang@cse.nsysu.edu.tw (C.-B. Yang).
0020-0190/$ – see front matter © 2007 Published by Elsevier B.V.
doi:10.1016/j.ipl.2007.08.028
k, is not fixed, the problem is NP-complete even over
binary alphabets [14]. In general, many researches and
applications focused on the LCS problem of only two
input sequences [5,19]. The LCS problem is a famous
and classical problem in computer science and mole-
cular biology [6]. The common subsequences can be
viewed as the identical parts of the input sequences, that
can help us reconstruct an alignment of these sequences.
There are several variant LCS problems for specific ap-
plications such as with fragments, constraint sequences,
or increasing subsequences [2,4,16,20].

Let us consider a special relationship of sequences
for playing the poker card. The riffle shuffle, which is
a shuffle trick when we play poker cards, merges two

K.-S. Huang et al. / Information Processing Letters 105 (2008) 188–193 189
halves of a given deck of cards into one interleaving
deck. If only one shuffle is performed, it is easy to find
the mapping relation between the interleaved deck and
the two original halves. We can observe that the card or-
der of each original half must be conserved unbrokenly
in the interleaved deck. It is interesting that the riffle
shuffle phenomenon exists in the genomes of organisms,
but it is more complex than that in poker cards. The
complexity rises due to the existence of identical cards,
the missing cards of the deck and the original halves,
and the clones of some cards, that are corresponding to
identical symbols, gene loss, and gene duplications in
genomes, respectively. The term synteny means that the
order of specific genes in the chromosome is conserved
over different organisms [10,9].

Recently, the interleaving relationship of sequences
is shown in the genomic comparison of two yeast
species Kluyveromyces waltii and Saccharomyces cere-
visiae [10]. Kellis et al. tried to find the doubly con-
served synteny (DCS) blocks of the two species, in
which each region of K. waltii is associated with two
regions of S. cerevisiae, as the support for the whole
genome duplication (WGD) or two rounds of gene du-
plication (2R) hypothesis [7,10,15]. In addition, Jaillon
et al. proposed the genomic comparison of human and
Tetraodon, a teleost fish, chromosomes [9]. The synteny
blocks and the WGD are also available in the genomic
comparison of human and Tetraodon. For finding the
DCS blocks, we can use local alignment [18] to iden-
tify the relationship of similar regions, or try to locate
known genes on chromosomes. But this approach is a
working heuristic and it may not be computationally
optimal.

In this paper, we define the merged LCS problem, de-
noted as LCS(T ,E(A,B)), to measure the interleaving
relationship among sequences T , A and B . The merged
sequence E(A,B) is composed of A and B interlacedly.
That is, E(A,B) can be separated into two disjoint sub-
sequences of A and B . For understanding the relation-
ship among sequences T , A and B , we can first merge
A and B to a specific interleaving sequence E(A,B);
then find the relationship, such as LCS or alignment,
of T and E(A,B). This problem is not so trivial because
there are many various sequences of E(A,B) based on
different interleaving combinations of A and B . Note
that in this paper, LCS(A,B) may be used to repre-
sent the length value of LCS(A,B) or the string of
LCS(A,B) alternatively if there is no ambiguity of its
meaning.
2. The merged LCS problem

Given a target sequence T = t1t2 · · · t|T |, and a
pair of merging sequences A = a1a2 · · ·a|A| and B =
b1b2 · · ·b|B|, where |T |, |A| and |B| denote the lengths
of T , A and B , respectively. We regard sequence lengths
as O(n) for simplicity. A merged sequence E(A,B) =
e1e2e3 · · · e|E(A,B)| is obtained by merging two subse-
quences of A and B , where ei ∈ {aj | 1 � j � |A|}
∪{bk | 1 � k � |B|} and 1 � i � |E(A,B)|; that is,
there exists one subsequence S of E(A,B) such that
S is a subsequence of A and E(A,B) − S is a subse-
quence of B . The merged LCS (MLCS) problem is to
find the LCS of T and E(A,B), denoted by

LCS
(
T ,E(A,B)

)

= LCS
(
t1t2 · · · t|T |,E(a1a2 · · ·a|A|, b1b2 · · ·b|B|)

)
.

Note that based on the definition, the interleaving se-
quence E(A,B) may not be unique.

For example, consider sequences T = atacgcgctt,
A = cgatacc, and B = aattcgc. E1(A,B) =
cgataaacgc, E2(A,B) = aattcgacgctacc, and
E3(A,B) = cgaaatactcgc are some merged se-
quences of A and B . We can find that LCS(T ,E1(A,

B)) = atacgc, LCS(T ,E2(A,B)) = aacgcgct,
LCS(T , E3(A,B)) = ataccgc. In this example,

LCS
(
T ,E(A,B)

) = LCS
(
T ,E2(A,B)

)

with length 8.
We may design a simple heuristic for solving the

MLCS problem. One may first find LCS(T ,A) and
LCS(T − LCS(T ,A),B), and then merge them into
a solution candidate. Another candidate is the merged
sequence of LCS(T ,B) and LCS(T − LCS(T ,B),A).
However, this heuristic may miss the optimal solu-
tion. One can easily examine one counter example with
sequences Tc = aaaggccctt, Ac = ggaaacc, and
Bc = aattccc.

Here, we propose a dynamic programming algorithm
for solving the MLCS problem as follows. For abbrevi-
ating the expressions, let

L(i, j, k) = LCS
(
t1t2 · · · ti ,E(a1a2 · · ·aj , b1b2 · · ·bk)

)
.

Algorithm MergedLCS

Input: A target sequence T , and two merging se-
quences A and B .

Output: LCS(T ,E(A,B)) = L(|T |, |A|, |B|).
Step 1. Initialize L(0, j, k) = 0 and compute L(i, j,0)

and L(i,0, k) and by the dynamic program-
ming approach for LCS(T ,A) and LCS(T ,B),
for 0 � i � |T |, 0 � j � |A| and 0 � k � |B|.

190 K.-S. Huang et al. / Information Processing Letters 105 (2008) 188–193
Step 2. For 1 � i � |T |, 1 � j � |A| and 1 � k � |B|,
calculate L(i, j, k) with the following dynamic
programming formula.

L(i, j, k)

= max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L(i − 1, j − 1, k) + 1 if ti = aj ,

L(i − 1, j, k − 1) + 1 if ti = bk,

max

⎧⎨
⎩

L(i − 1, j, k)

L(i, j − 1, k)

L(i, j, k − 1)

if ti �= aj and
ti �= bk .

(1)

Step 3. Return LCS(T ,E(A,B)) = L(|T |, |A|, |B|).

Theorem 1. Algorithm MergedLCS solves the MLCS
problem in O(|T ||A||B|) time and O(|A||B|) space.

Proof. We shall prove the correctness of Algorithm
MergedLCS by induction. One can easily verify the cor-
rectness of the boundary cases in Step 1 and the base
case L(1,1,1) in Step 2. For considering L(i′, j ′, k′),
suppose that L(i, j, k) is optimal for all i � i′, j � j ′,
k � k′ but (i, j, k) �= (i′, j ′, k′). If there exists a match
for computing L(i′, j ′, k′), one can obtain L(i′, j ′, k′)
from either L(i′ − 1, j ′ − 1, k′) + 1 or L(i′ − 1, j ′,
k′−1)+1 based on its matched situation, either ti′ = aj ′
or ti′ = bk′ , respectively. The value of L(i′, j ′, k′) is at
most max{L(i′ −1, j ′ −1, k′), L(i′ −1, j ′, k′ −1)}+1.
With the existence of this match, L(i′, j ′, k′) reaches the
possible maximal value, and hence L(i′, j ′, k′) is op-
timal. If there is no match for computing L(i′, j ′, k′),
that is ti′ �= aj ′ and ti′ �= bk′ , we can try to remove one
of symbols, ti′ , aj ′ , or bk′ for computing L(i′, j ′, k′).
Hence the optimal value of L(i′, j ′, k′) must be the
maximal value among L(i′ − 1, j ′, k′), L(i′, j ′ − 1, k′),
and L(i′, j ′, k′ − 1). Since there is no match, the value
will not be increased and L(i′, j ′, k′) is also optimal.
Therefore, we can conclude that the dynamic program-
ming formula is correct.

The time complexity is clearly O(|T ||A||B|) based
on the dynamic programming formula. We can reduce
the space complexity to O(|A||B|) with the same con-
cept of divide and conquer used in the LCS algo-
rithm [6]. In order to reduce the space complexity, let

LH

([i, i′], [j, j ′], [k, k′]) = LCS
(
ti ti+1 · · · ti′−1ti′ ,

E(ajaj+1 · · ·aj ′−1aj ′ , bkbk+1 · · ·bk′−1bk′)
)
.

The MLCS can also be computed by the recurrence for-
mula

LH

([i, i′], [j, j ′], [k, k′])

= max′ ′
{
LH

([
i, �(i + i′)/2�], [j,p], [k, q])
j�p�j ,k�q�k
+ LH

([�(i + i′)/2� + 1, i′
]
, [p + 1, j ′],

[q + 1, k′])}. �
Since we assume that the lengths of sequences T , A

and B are O(n). it is clear that Algorithm MergedLCS
can solve the MLCS problem in O(n3) time and O(n2)

space.

3. The merged LCS problem with block constraint

In real applications, the MLCS problem may be ac-
complished with some constraints, such as the block
constraint. The block constraint is based on the known
sequence segments of genes or the specific DNA seg-
ments that we are interested in, such as the coding
sequences (CDS) and mRNA segments in a GenBank
file [3]. Fortunately, the required time and space for
solving the MLCS problem will be reduced by adopt-
ing the block constraint.

The MLCS problem with block constraint, abbrevi-
ated as the blocked merged LCS (BMLCS) problem,
is described as follows. Given a target sequence T =
t1t2 · · · t|T |, and a pair of merging block sequences A =
A1A2 · · ·Aα = a1a2 · · ·a|A| and B = B1B2 · · ·Bβ =
b1b2 . . . b|B|, where α, β are the numbers of the blocks
of A and B , respectively. A blocked merged sequence
Eb(A,B) = E1E2E3 · · ·Eε = e1e2e3 · · · e|Eb(A,B)| is
composed of the blocks in A and B , where Eb

i ∈ {Aj |
1 � j � α} ∪ {Bk | 1 � k � β} and 1 � i � ε, ε is the
number of blocks in Eb(A,B). That is, there exists one
block subsequence S of Eb(A,B) such that S is a block
subsequence of A, and Eb(A,B) − S is a block subse-
quence of B . Here, one block subsequence of a block
sequence A can be obtained by deleting zero or more
blocks from A. The BMLCS problem is to find the block
constrained LCS of T and Eb(A,B), denoted by

bLCS
(
T ,Eb(A,B)

)

= bLCS
(
t1t2 · · · t|T |,Eb(A1A2 · · ·Aα,B1B2 · · ·Bβ)

)
.

By adding some block constraints into the example
in Section 2, consider sequences T = atacgcgctt,
A = A1A2 = cgat acc, and B = B1B2B3 = aat tc
gc. In detail, blocks A1 = cgat, A2 = acc, B1 =
aat, B2 = tc, and B3 = gc. With the block constraint,
let Eb

4 (A,B) = A1B1B2A2 = cgat aat tc acc,
Eb

5 (A,B) = B1A1A2B2 = aat cgat acc tc, and
Eb

6 (A,B) = B1B2A1B3A2 = aat tc cgat gc acc
are some blocked merged sequences of A and B .
We can compute that bLCS(T ,Eb

4 (A,B)) = ataccc,
bLCS(T ,Eb

5 (A,B)) = atcgcct, and bLCS(T ,Eb
6 (A,

B)) = ataccc. In this block constrained case, bLCS(T ,

K.-S. Huang et al. / Information Processing Letters 105 (2008) 188–193 191
Eb(A,B)) = bLCS(T ,Eb
5 (A,B)) with length 7. Note

that the solution previously found for LCS(T ,E2(A,B))

does not survive the above block constraints.
Similar to the merged sequence, the blocked merged

sequence of A and B may not be unique based on the
definition. Here, we do not specify any block constraint
on the target sequence T ; so we do not expect that each
block of Eb(A,B) should align to any specific block
of T . The reason is that if the target sequence is just se-
quenced, its annotation and block information may not
be available yet. In the BMLCS problem, the absence of
block information of any one merging sequence, A or B ,
is allowed because we can regard each symbol as one
block. If there exist block constraints on T , we can eas-
ily extend and modify Algorithm MergedLCS to solve
the problem by regarding each block as a specific sym-
bol, under the assumption that each block can only align
to at most one block of another sequence. If several
blocks in T can be aligned to several blocks in A and B ,
it turns out to be a harder problem, which is not dis-
cussed here. By combining Algorithm MergedLCS and
the block constraint, we can use the dynamic program-
ming formula in Fig. 1 to solve the BMLCS problem.

All of the three cases in Fig. 1 lead to an important
characteristic, the end symbol of a block (EOB). The
symbol index of A or B in L(i, j, k) can be changed
validly only when the symbol index is EOB. If the in-
dex is not at the end of a block, we must move this index
until it reaches an EOB. There are O(|T |) and O(α+β)

positions that should be considered for T and the EOB’s
of Eb(A,B), respectively. When a specific position
of T and one EOB are fixed, O(|A| + |B|) positions are
needed to be compared in the worst case. We conclude
that the time complexity is O(|T |(|A| + |B|)(α + β)),
abbreviated as O(n2m) in general with m = max{α,β},
which is less than that of Algorithm MergedLCS.

Let us consider a different viewpoint of the BMLCS
problem. If we perform some preprocessing rather
than the straightforward computation, we can design
a more efficient algorithm. For example, to deal with
sequences T , A1 and B3, we can spend O(|T ||A1|)
and O(|T ||B3|) time to compute LCS(T ,A1) and
LCS(T ,B3) respectively, and store the necessary in-
formation S-table [8,12,13] in advance. In brief, the
S-table stores the leftmost indexes of various LCS
lengths. If we want to compute LCS(T ,A1B3) or
LCS(T ,B3A1), we can reuse the S-table. Let T [i1, i2]
represent one substring ti1 ti1+1 · · · ti2−1ti2 of T , and
T [i1, i2] is empty if i1 > i2. The S-table of sequences T

and X, denoted as St (T ,X), stores the LCS length
of X and each suffix T [i, |T |] of T . The symbol ⊕ de-
notes the merging operation of a vector and an S-table.
Lemma 2 describes the S-table and a basic dynamic
programming operation which utilizes a precomputed
S-table to speed up LCS computations. This technique
will later be applied to speed up our algorithm.

Lemma 2. (See [1,8,11–13,17].) Given a sequence T

and a composite sequence C = C1C2, LCS(T [1, j],C1),
1 � j � n, and St (T ,C2) can be obtained in O(|T ||C1|)
and O(|T ||C2|) time, respectively. If LCS(T [1, j],C1)

and St (T ,C2) are given, LCS(T [1, j],C1C2) can be
obtained by merging LCS(T [1, j],C1) ⊕ St (T ,C2) in
O(|T |) time.

Let

Lb(i, j, k)

= LCS
(
t1t2 · · · ti ,Eb(A1A2 · · ·Aj ,B1 · · ·Bk)

)
,

where 0 � i � |T |, 0 � j � α, 0 � k � β . The vector
V b(j, k) = 〈Lb(1, j, k),Lb(2, j, k), . . . ,Lb(|T |, j, k)〉
stores the LCS of Lb(i, j, k) for each prefix T [1, i] of
T and Eb(A1A2 · · ·Aj ,B1B2 · · ·Bk). For a specific po-
sition x,

Lb(x, j, k) = max
0�i�x

{
Lb(i, j − 1, k)

+ LCS
(
T [i + 1, x],Aj

)
,Lb(i, j, k − 1)

+ LCS
(
T [i + 1, x],Bk

)}
.

L(i, j, k) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L(i − 1, j − 1, k) + 1 if ti = aj ,

L(i, j − 1, k) if ti �= aj ,

L(i − 1, j, k − 1) + 1 if ti = bk,

L(i, j, k − 1) if ti �= bk,

L(i − 1, j, k) if ti �= aj and ti �= bk,

if aj = EOB and bk = EOB,

max

⎧⎨
⎩

L(i − 1, j − 1, k) + 1 if ti = aj ,

L(i, j − 1, k) if ti �= aj ,

L(i − 1, j, k) if ti �= aj ,

if aj �= EOB and bk = EOB,

max

⎧⎨
⎩

L(i − 1, j, k − 1) + 1 if ti = bk,

L(i, j, k − 1) if ti �= bk,

L(i − 1, j, k) if ti �= bk,

if aj = EOB and bk �= EOB.

(2)

Fig. 1. The dynamic programming formula for solving the BMLCS problem, where EOB means the end of a block.

192 K.-S. Huang et al. / Information Processing Letters 105 (2008) 188–193
Algorithm BMergedLCS+ is our improved version for
solving the BMLCS problem by using the S-table.

Algorithm BMergedLCS+

Input: A target sequence T , and two merging block
sequences A and B .

Output: bLCS(T ,Eb(A,B)) = Lb(|T |, α,β).
Step 1. Compute and store St (T ,Aj) and St (T ,Bk)

from LCS(T ,Aj) and LCS(T ,Bk), respec-
tively, where 1 � j � α, 1 � k � β .

Step 2. Initialize Lb(i,0,0) = 0, for 1 � i � |T |.
Step 3. Compute V b(j, k) = max{V b(j − 1, k) ⊕

St (T ,Aj),V
b(j, k − 1) ⊕ St (T ,Bk)}, for 1 �

j � α, 1 � k � β .
Step 4. Return bLCS(T ,Eb(A,B)) = Lb(|T |, α,β).

Theorem 3. Algorithm BMergedLCS+ solves the
BMLCS problem in O(n2 + nm2) time and space.

Proof. The correctness is clear because the recurrence
formula in Step 3 checks all combinations of Eb(A,B),
and bLCS(T ,Eb(A,B)) is obtained by merging small
blocks progressively based on Lemma 2. In Step 1, it
requires O(|T |(|A| + |B|)) time and space to compute
and store the S-table. In Step 2, the initialization for
Lb(i,0,0) requires O(|T |) time. In Step 3, the length
of vector V b(j, k) is |T |. Based on Lemma 2, we can
obtain the merged vectors V b(j − 1, k) ⊕ S(T ,Aj) and
V b(j, k − 1) ⊕ S(T ,Bk) in O(|T |) time. The vector
V b(j, k) can be computed in O(|T |) time by simply
comparing V b(j −1, k)⊕S(T ,Aj) and V b(j, k −1)⊕
S(T ,Bk) for each position in T . The merging opera-
tion ⊕ is invoked for each j and k, where 1 � j � α �
m and 1 � k � β � m. So, vector V b(j, k) can be com-
puted in O(nαβ) time, which is denoted as O(nm2)

in general. Here, we can store all vectors V b(j, k) for
tracing the LCS path [8,17]; this also requires O(nm2)

storage. Thus, both time and space complexities of this
algorithm are O(n2 + nm2). �
4. Conclusion

In this paper, we introduce the merged LCS problem
and its variant with the block constraint for finding in-
terleaving relationship between sequences. The merged
LCS problem can be used as one measurement of dou-
bly conserved synteny block and thus it is a real problem
in the molecular biology research. We first propose an
algorithm for the merged LCS problem, whose time and
space complexities are O(n3) and O(n2), respectively,
where n is the sequence length. For reducing time and
space requirements of the algorithm, we consider the
block information of real data and define the blocked
merged LCS problem. For the blocked merged LCS
problem, we propose two algorithms with time com-
plexities O(n2m) and O(n2 + nm2), where m is the
number of blocks and m � n.

There are still some problems worth further study.
Our algorithms here focus on the LCS problem. For pro-
tein sequences or considering the effect of gaps, one
may extend the merged LCS problem to the merged
alignment problem. Furthermore, one may extend the
problem to the multiple merged LCS or multiple merged
alignment problems for merging several sequences to be
an algorithm for detecting 3R or 4R blocks of whole
genome duplication.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, R. Wilber, Geo-
metric applications of a matrix-searching algorithm, Algorith-
mica 2 (1) (1987) 195–208.

[2] B.S. Baker, R. Giancarlo, Sparse dynamic programming for
longest common subsequence from fragments, Journal of Algo-
rithms 42 (2) (2002) 231–254.

[3] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, D.L.
Wheeler, GenBank, Nucleic Acids Research 34 (2006) D16–
D20.

[4] F.Y.L. Chin, A.D. Santis, A.L. Ferrara, N.L. Ho, S.K. Kim,
A simple algorithm for the constrained sequence problems, In-
formation Processing Letters 90 (4) (2004) 175–179.

[5] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Com-
puter Science and Computational Biology, Cambridge Press,
New York, 1997.

[6] D.S. Hirschberg, A linear space algorithm for computing maxi-
mal common subsequence, Communications of the ACM 18 (6)
(1975) 341–343.

[7] K. Hokamp, A. McLysaght, K.H. Wolfe, The 2R hypothesis and
the human genome sequence, Journal of Structural and Func-
tional Genomics 3 (1–4) (2003) 95–110.

[8] K.-S. Huang, C.-B. Yang, K.-T. Tseng, Y.-H. Peng, H.-Y.
Ann, Dynamic programming algorithms for the mosaic longest
common subsequence problem, Information Processing Let-
ters 102 (2–3) (2007) 99–103.

[9] O. Jaillon, et al., Genome duplication in the teleost fish tetraodon
nigroviridis reveals the early vertebrate proto-karyotype, Na-
ture 431 (7011) (2004) 946–957.

[10] M. Kellis, B.W. Birren, E.S. Lander, Proof and evolutionary
analysis of ancient genome duplication in the yeast saccha-
romyces cerevisiae, Nature 428 (6983) (2004) 617–624.

[11] G.M. Landau, E. Myers, M. Ziv-Ukelson, Two algorithms for lcs
consecutive suffix alignment, in: Combinatorial Pattern Match-
ing, in: Lecture Notes in Computer Science, vol. 3109, Springer,
Berlin, Heidelberg, 2004, pp. 173–193.

[12] G.M. Landau, B. Schieber, M. Ziv-Ukelson, Sparse LCS com-
mon substring alignment, Information Processing Letters 88 (6)
(2003) 259–270.

[13] G.M. Landau, M. Ziv-Ukelson, On the common substring align-
ment problem, Journal of Algorithms 41 (2) (2001) 338–354.

[14] D. Maier, The complexity of some problems on subsequences
and supersequences, Journal of the ACM 25 (2) (1978) 322–336.

K.-S. Huang et al. / Information Processing Letters 105 (2008) 188–193 193
[15] S. Ohno, Evolution by Gene Duplication, Springer, Heidelberg,
1970.

[16] C.-L. Peng, An approach for solving the constrained longest
common subsequence problem, Master Thesis, Department of
Computer Science and Engineering, National Sun Yat-sen Uni-
versity, Taiwan, July 2003.

[17] J.P. Schmidt, All highest scoring paths in weighted grid graphs
and their application to finding all approximate repeats in strings,
SIAM Journal on Computing 27 (4) (1998) 972–992.
[18] T.F. Smith, M.S. Waterman, Identification of common molecular
subsequences, Journal of Molecular Biology 147 (1) (1981) 195–
197.

[19] C.B. Yang, R.C.T. Lee, Systolic algorithms for the longest com-
mon subsequence problem, Journal of the Chinese Institute of
Engineers 10 (6) (1987) 691–699.

[20] I.-H. Yang, C.-P. Huang, K.-M. Chao, A fast algorithm for com-
puting a longest common increasing subsequence, Information
Processing Letters 93 (5) (2005) 249–253.

