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Given a pair of merging sequences A, B and a target sequence T , the merged longest 
common subsequence (MLCS) problem is to find out the longest common subsequence 
(LCS) between sequences E(A, B) and T , where E(A, B) is obtained from merging two 
subsequences of A and B . In this paper, we first propose an algorithm for solving the 
MLCS problem in O (n|�| + (r − L + 1)Lm) time and O (n|�| + Lm) space, where r and 
L denote the lengths of T and MLCS, respectively, and m and n denote the shorter and 
longer lengths of A and B , respectively. From the time complexity, it is clear that our 
algorithm is very efficient when T and E(A, B) are very similar. With slight modification, 
our algorithm can also solve another merged LCS problem variant, the block-merged LCS 
(BMLCS) problem, in O (n|�| + (r − L +1)Lδ) time and O (n|�| + Lδ) space, where δ denotes 
the larger number of blocks of A and B . Experimental results show that our algorithms are 
faster than other previously published MLCS and BMLCS algorithms for sequences with 
high similarities. The source codes and datasets for experiments can be found on our web 
site http :/ /par.cse .nsysu .edu .tw /~mlcs/ [20].

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is essential in many applications to measure the similarity of two sequences, such as computational biology, pattern 
matching, plagiarism detection, voice recognition, and so on. The most well-known methods for measuring the sequence 
similarity in computer science are the algorithms for the longest common subsequence (LCS) problem [1–4,6,7,12,19,32–35]
and the edit distance problem [22–25,28].

Given two sequences A = a1a2a3 . . .am and B = b1b2b3 . . .bn , the longest common subsequence (LCS) problem is to find 
the longest sequence which is a subsequence of both A and B . Without loss of generality, it is assumed that m ≤ n. Here, 
a subsequence of A or B can be obtained by deleting an arbitrary number of characters at arbitrary positions of A or B . 
The LCS of A and B is denoted by LC S(A, B). For example, consider A = accgt and B = tagct . LC S(A, B) is agt or act .

The LCS problem has been extensively studied since 1970. In 1974, Wagner and Fischer proposed a dynamic program-
ming (DP) algorithm with O (mn) time and O (mn) space [38]. After that, Hirschberg improved the space complexity from 
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Table 1
Time and space complexities of the MLCS and BMLCS algorithms. Notations: |A| = m, |B| = n,

m ≤ n, |T | = r; α, β: number of blocks in A and B , respectively; δ = max{α, β}; In Grabowski [11], 
r = �(nc) for some constant c > 0; w: word size of a computer; L: length of the MLCS or BMLCS an-
swer; R, P : numbers of matching pairs of A, T and B , T respectively.

Authors MLCS problem BMLCS problem

Time complexities
Huang et al. [15] O (rnm) O (rnδ)

O (r2 + rδ2)

Peng et al. [29] O (Lrm) O (Lrδ)
Deorowicz and Danek [9,8] O (�r/w�mn log w) O ((mβ + nα)�r/w� + αβ�r/w�)
Rahman and Rahman [31] O ((Rm +Pn) log logm) O ((Rβm +Pαn) log log m)

Grabowski [11] O (mnr/ log1.5 n)

This paper O (n|�| + (r − L + 1)Lm) O (n|�| + (r − L + 1)Lδ)

Space complexities
Huang et al. [15] O (mn) O (r2 + rδ2)

Peng et al. [29] O (n + Lm) O (n + Lδ)

Rahman and Rahman [31] θ(max{rn,m}) θ(max{R+P,m})
This paper O (n|�| + Lm) O (n|�| + Lδ)

O (mn) to linear with the divide-and-conquer approach [13]. In 1977, Hunt and Szymanski proposed an algorithm con-
sidering only the matching characters of the two sequences with O (n + (R + m) logm) time [17], where R denotes the 
total number of matching pairs of the two sequences. R should be small if |�|, the size of the alphabet set, is large, 
and thus the algorithm is efficient. On the contrary, if |�| is small, the efficiency of their algorithm is lowered dramati-
cally and the time complexity of the worst case becomes O (mn log m). Theoretically, their algorithm can be improved to 
O (n + (R + m) log log m) time with the van Emde Boas tree [17]. In 1982, Nakatsu et al. utilized the diagonal concept to 
solve the LCS problem with O (n(m − L)) time [26], where L denotes the length of LC S(A, B), and it is more efficient for 
similar sequences.

The merged LCS (MLCS) problem is a variant of the LCS problem. Given a pair of merging sequences A = a1a2a3 . . .am

and B = b1b2b3 . . .bn , and a target sequence T = t1t2t3 . . . tr , the MLCS problem is to find the LCS of the merged sequence 
E(A, B) and the target sequence T . E(A, B) is obtained by merging two subsequences of A and B arbitrarily with preserving 
their orders. Formally, we have E(A, B) = e1e2e3 . . . e|E(A,B)| such that its subsequence P = ei1 ei2 . . . eik , where 1 ≤ i1 < i2 <

· · · < ik ≤ |E(A, B)|, is a subsequence of A, and the remaining subsequence of E(A, B) after removing P is a subsequence 
of B . The answer of the MLCS problem is denoted by MLC S(A, B, T ). Without loss of generality, we assume that m ≤ n.

For example, consider sequences A = a1a2a3 = acg , B = b1b2b3b4 = ccca and a target sequence T = t1t2t3t4t5t6 = actcgc. 
There are many ways to construct the merged sequence E(A, B), such as E1(A, B) = a1b1b2b3a2a3b4 = accccga, E2(A, B) =
b1b2b3b4a1a2a3 = cccaacg and E3(A, B) = a1b1b2a2a3b3b4 = acccgca. In this example, LC S(E3(A, B), T ) = accgc is the an-
swer of the MLCS problem.

The MLCS problem was first defined by Huang et al. in 2008 [15] and they proposed a dynamic programming algorithm 
with O (mnr) time algorithm to solve it. In 2010, Peng et al. proposed an algorithm for solving the MLCS problem in O (Lnr)
time [29], where L denotes the length of MLC S(A, B, T ). If L is small, their algorithm performs well. Based on Huang’s 
[15] algorithm, Deorowicz and Danek proposed the bit-parallel algorithm for solving MLCS problem in O (�r/w�mn log w)

time [9], where w denotes the word size of a computer and w ≥ log(max(n, r)). In 2014, Rahman and Rahman proposed 
an algorithm with O ((Rr +Pm) log log r) time, which uses the bounded heap data structure to reduce the time complexity 
[31], where R and P denote the total numbers of matching pairs in A, T and B , T respectively. In 2016, Grabowski [11]
proved that the MLCS problem can be computed with O (mnr/ log1.5 n) time in the worst case, when r = |T | = �(nc) for 
some constant c > 0.

The block-merged LCS (BMLCS) problem [15] is a variant of the MLCS problem with additional block constrains for merging 
sequences A and B . In the BMLCS problem, the input sequences A and B are divided into α and β blocks, respectively, where 
δ = max{α, β}. The subsequence extracted from one block should be contained in BMLCS as a substring. Several algorithms 
have been proposed for solving the BMLCS problem [8,15,29,31]. In general, these algorithms were modified and extended 
from the MLCS algorithms with the same concept. Worth to be mentioned, Huang et al. [15] invoked the S-table technique 
[21] to speed up the computational time in solving the BMLCS problem. Table 1 shows the time and space complexities of 
known algorithms [8,9,15,29,31] for solving these problems. Please note that our notations may be different from those in 
the original papers.

There are some applications for the MLCS and BMLCS problems. For example, the voice recognition, we have a complete 
voice data stream without noise and two or more incomplete voice data streams with different noises. We may recognize 
the voice command if we are able to compute the similarities among those voice streams. Another example is the gene loss 
during genome duplication and long-time evolution, coming from biology. Two species may come from the same ancestor 
and they may own different parts of their ancestor. Such an example can be found between two yeast species Saccharomyces 
cerevisiae and Kluyveromyces waltii [18]. Kellis et al. [18] obtained the support for the whole-genome duplication (WGD) or 
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two rounds of gene duplication (2R) hypothesis [14,27] after detecting the doubly conserved synteny (DCS) blocks of the 
above two yeast species.

From the time complexities of the algorithms proposed by Peng et al. [29], it is obvious that the shorter MLCS or BMLCS 
length, the better the performance is. Both their MLCS and BMLCS algorithms are efficient if the merged sequence and 
the target sequence are dissimilar, which means that L is small. On the contrary, if the given sequences are similar, their 
algorithms cannot perform so well. Therefore, in this paper, we focus on the situation for similar sequences. Inspired by 
the LCS algorithm proposed by Nakatsu et al. [26], we propose efficient algorithms to solve the merged LCS (MLCS) and 
block-merged LCS (BMLCS) problems with O (n|�| + (r − L + 1)Lm) time and O (n|�| + (r − L + 1)Lδ) time, respectively. When 
L is large (i.e., the input sequences are similar), our algorithms are very efficient.

The rest of this paper is organized as follows. In Section 2, some preliminaries and definitions of the MLCS and BMLCS 
problems are introduced. In Sections 3 and 4, we present our MLCS and BMLCS algorithms, respectively. Then, in Section 5, 
the comparisons of the execution time with previously published algorithms are given. Finally, we give our conclusions and 
future works in Section 6.

2. Preliminaries

In this section, we present some notations and describe the dynamic programming (DP) methods for solving the merged 
LCS (MLCS) and block-merged LCS (BMLCS) problems [15].

Let a sequence S = s1s2s3 . . . s|S| be a sequence of characters over a finite alphabet set �. The notations are listed as 
follows:

• |S|: the length of S .
• si : the ith character of S .
• Si.. j : the substring of S from position i to position j, where Si.. j = ε if j > i, and ε denotes an empty string.

In the MLCS problem, let H(i, j, k) denote the length of MLC S (A1..i, B1.. j, T1..k). The DP formula for solving the MLCS 
problem proposed by Huang et al. [15] is given as follows.

H(i, j,k) =max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H(i − 1, j,k − 1) + 1 if ai = tk

H(i, j − 1,k − 1) + 1 if b j = tk

max

⎧⎪⎨
⎪⎩

H(i − 1, j,k)

H(i, j − 1,k)

H(i, j,k − 1)

if ai �= tk or b j �= tk

(1)

with the boundary conditions:

H(i,0,k) = length of LC S(A1..i, T1..k) and H(0, j,k) = length of LC S(B1.. j, T1..k).

In 2013, Deorowicz and Danek [9] found that there is a bit of error in the original DP formula of Huang et al. [15], which 
was originally written as “if ai �= tk and b j �= tk” in the third condition. They gave a counterexample with A = dda, B = bac
and T = aba. They also suggested the correction with keeping the last three functions, but removing the third condition. 
Here, we give another correction, presented in Eq. (1), which corrects the error from “ai �= tk and b j �= tk” to “ai �= tk or 
b j �= tk”. For ai = tk and b j = tk , the solution must come from the first or the second function, since we cannot ignore the 
length increase from tk when tk is identical to both ai and b j . On the other hand, the solution may come from the last 
three functions (third condition) when ai �= tk or b j �= tk (i.e., negation of “ai and b j ”).

As for the BMLCS problem, we are given a pair of merging block sequences A = a1a2a3 . . .am = A1 A2 A3 . . . Aα and 
B = b1b2b3 . . .bn = B1 B2 B3 . . . Bβ and a target sequence T = t1t2t3 . . . tr , where α and β denote the numbers of blocks in 
sequences A and B , respectively. The BMLCS problem is to find the LCS between the blocked merged sequence Eb(A, B) and 
a target sequence T , denoted by BMLC S(A, B, T ). Here, the blocked merged sequence Eb(A, B) can be obtained by merging 
block sequences A and B in their original orders.

For example, suppose A = A1 A2 = a#cg#, B = B1 B2 = ccc#a#, and T = actcgc, where the character # denotes the end 
of a block (EOB). EOB is nothing but a virtual dividing character, not a real character. In this example, both A and B are 
divided into two blocks. The blocked merged sequence Eb(A, B) can be obtained by examining all possible permutations 
between block sequences A and B , such as Eb

1(A, B) = A1 A2 B1 B2 = acgccca, Eb
2(A, B) = A1 B1 A2 B2 = accccga, Eb

3(A, B) =
A1 B1 B2 A2 = acccacg , Eb

4(A, B) = B1 B2 A1 A2 = cccaacg , Eb
5(A, B) = B1 A1 B2 A2 = cccaacg and Eb

6(A, B) = B1 A1 A2 B2 =
cccacga. The answer of BMLC S(A, B, T ) is LC S(Eb

2(A, B), T ) or LC S(Eb
3(A, B), T ), whose content is accg .

Let H B(i, j, k) denote the length of BMLC S(A1..i, B1.. j, T1..k). The DP formula for solving the BMLCS problem proposed 
by Huang et al. [15] is given as follows.
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H B(i, j,k) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H B(i − 1, j,k − 1) + 1 if ai = tk

H B(i − 1, j,k) if ai �= tk

H B(i, j − 1,k − 1) + 1 if b j = tk

H B(i, j − 1,k) if b j �= tk

H B(i, j,k − 1) if ai �= tk or b j �= tk

if ai = E O B

or b j = E O B

max

⎧⎪⎨
⎪⎩

H B(i − 1, j,k − 1) + 1 if ai = tk

H B(i − 1, j,k) if ai �= tk

H B(i, j,k − 1) if ai �= tk

if ai �= E O B

and b j = E O B

max

⎧⎪⎨
⎪⎩

H B(i, j − 1,k − 1) + 1 if b j = tk

H B(i, j − 1,k) if b j �= tk

H B(i, j,k − 1) if b j �= tk

if ai = E O B

and b j �= E O B

(2)

with the boundary conditions:

H B(i,0,k) = length of LC S(A1..i, T1..k) and H B(0, j,k) = length of LC S(B1.. j, T1..k).

The time complexity of the above algorithm is O (mnδ). Furthermore, Huang et al. [15] utilized the S-table technique [21]
to reduce the required time to O (n2 + nδ2) for the block-merged LCS problem.

Nakatsu et al. proposed an O (n(m − L))-time algorithm for solving the LCS problem [26]. It can be seen that their 
algorithm is very efficient when L is large, i.e. the two input sequences are similar. In fact, their algorithm is a method 
based on the diagonal scheme, instead of the domination concept.

Given A1..i , let di,s denote the smallest index j of B such that |LC S(A1..i, B1.. j)| = s. Nakatsu et al. solved the LCS 
problem with di,s as follows [26].

di,s =
⎧⎨
⎩

min( j,di−1,s) if there exists the smallest j such that ai = b j,

where j > di−1,s−1 when s ≥ 2.

di−1,s if there is no such j.
(3)

3. Our merged LCS algorithm

Our MLCS algorithm is inspired by the LCS algorithm of Nakatsu et al. [26], which is more efficient with highly simi-
lar sequences. Our algorithm is a diagonal-based method, and utilizes the domination concept to reduce the unnecessary 
computation.

First, we give the definition of the minimum dominating set Dk,s and then present three lemmas and a theorem as a basis 
for solving the MLCS problem. In the following, we use MLC S(A1..i, B1.. j, T1..k) to denote the length of the MLCS answer 
when there is no ambiguity. If it represents the sequence content, there will be explicit explanation.

Definition 1. For any two 2-tuples 〈i1, j1〉 and 〈i2, j2〉, 〈i1, j1〉 �= 〈i2, j2〉, we say that 〈i1, j1〉 dominates 〈i2, j2〉 if i1 ≤ i2 and 
j1 ≤ j2.

Definition 2. Let Dk,s , where k, s ≥ 0, denote the dominating set {〈i2, j2〉| MLC S(A1..i2 , B1.. j2 , T1..k) = s, and for any 〈i1, j1〉
that dominates 〈i2, j2〉, MLC S(A1..i1 , B1.. j1 , T1..k) ≤ s − 1}. In other words, any two distinct elements in Dk,s do not domi-
nate each other.

By Definitions 1 and 2, and the definition of the MLCS problem, there are some facts presented as follows.

Fact 1. Dk,s = ∅ if k < s, k < 0 or s < 0.

Fact 2. MLC S( ) is a monotonically increasing function. In other words, MLC S(A1..i, B1.. j, T1..k) ≤ MLC S(A1..x, B1..y, T1..z) if i ≤ x, 
j ≤ y and k ≤ z.

Then, we have the following lemmas.

Lemma 1. If MLC S(A1..i, B1.. j, T1..k) = s, there exists 〈x, y〉 which dominates 〈i, j〉 such that MLC S(A1..x, B1..y, T1..k) = s −1, where 
k, s ≥ 1.

Proof. By the definition of the MLCS problem, E(A1..i, B1.. j) and T1..k have a common subsequence of length s. Let merged 
sequence E(A1..i, B1.. j) = e1e2e3 . . . ei+ j . There must exist s matching index pairs in order 〈ex1 , t y1 〉 , 〈ex2 , t y2 〉 , · · · ,
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〈exs , t ys 〉 to be a common subsequence with length s, where 1 ≤ x1 < x2 < · · · ≤ (i + j) and 1 ≤ y1 < y2 < · · · ≤ k. Therefore, 
the common subsequence with length s − 1 can be obtained by deleting the last matching index pair 〈exs , t ys 〉. Thus, lemma 
holds. �
Lemma 2. For 〈i1, j1〉 ∈ Dk,s−1 and 〈i2, j2〉 ∈ Dk,s , k, s ≥ 1, it is true that i1 < i2 or j1 < j2 .

Proof. Assume that i2 ≤ i1 and j2 ≤ j1. By Fact 2, s = MLC S(A1..i2 , B1.. j2 , T1..k) ≤ MLC S (A1..i1 , B1.. j1 , T1..k) = s − 1. It is 
obviously not true that s ≤ s − 1. Therefore, the assumption is not true and the lemma holds. �
Lemma 3. For 〈i1, j1〉 ∈ Dk−1,s and 〈i2, j2〉 ∈ Dk,s , k, s ≥ 1, it is true that i2 ≤ i1 or j2 ≤ j1 .

Proof. We prove this lemma by contradiction. Assume that i1 < i2 and j1 < j2. By Fact 2, we have

MLC S(A1..i1 , B1.. j1 , T1..k−1) = s ≤ MLC S(A1..i1 , B1.. j1 , T1..k).

Then, we have

MLC S(A1..i1 , B1.. j1 , T1..k) = s + λ, λ ≥ 0.

Case 1: If λ = 0, then 〈i1, j1〉 can be put into Dk,s . Thus, 〈i1, j1〉 dominates 〈i2, j2〉 in Dk,s .
Case 2: If λ ≥ 1, then by applying Lemma 1 λ times, we can finally find 〈x, y〉 that x ≤ i1 < i2, y ≤ j1 < j2, and 
MLC S(A1..x, B1..y, T1..k) = s. It implies 〈x, y〉 dominates 〈i2, j2〉 in Dk,s .

By Definition 1, both cases are not true. Therefore, the assumption is not true and the lemma holds. �
For solving the MLCS problem efficiently, we first define three functions ExtA, ExtB and Dominate. Let 〈i1, j1〉 ∈ Dk−1,s−1. 

Note that MLC S(A1..i1 , B1.. j1 , T1..k−1) = s − 1. By observing one more character tk in T , ExtA(Dk−1,s−1) is to extend each 
element 〈i1, j1〉 ∈ Dk−1,s−1 to another 2-tuple 〈i2, j1〉, i1 < i2 ≤ m, such that i2 is the smallest index for ai2 = tk . If 
there exists no such 〈i2, j1〉, the extension result is defined to be empty. Similarly, ExtB(Dk−1,s−1) extends each element 
〈i1, j1〉 ∈ Dk−1,s−1 to 〈i1, j2〉, j1 < j2 ≤ n, such that j2 is the smallest index for b j2 = tk . After this extension, we get 
MLC S(A1..i2 , B1.. j1 , T1..k) ≥ s and MLC S(A1..i1 , B1.. j2 , T1..k) ≥ s. In other words, we extend one more character in T to find 
one more common character in A or B , and thus the length of the solution is extended from s − 1 to s or more. Note that 
in some cases, the length of the extended result may be increased by more than 1.

For example, suppose A = acg, B = ccca, T = actcgc. We have MLC S(ε, B1..4, T1..1) = 1, where ε denotes an empty string, 
and MLC S(A1..1, ε, T1..1) = 1, thus D1,1 = {〈0, 4〉, 〈1, 0〉}. Next, 〈0, 4〉 is extended to 〈2, 4〉 with ExtA by finding the index 
of the first matching character of c (t2) in A. Similarly, ExtA(〈1, 0〉) = 〈2, 0〉. So, ExtA(D1,1) = {〈2, 0〉, 〈2, 4〉}. We can also 
get ExtB(D1,1) = {〈1, 1〉}. Thus, we get an extended set W = ExtA(D1,1) ∪ ExtB(D1,1) = {〈1, 1〉, 〈2, 0〉, 〈2, 4〉}. As another 
example, consider A = g, B = accct, T = cccat . 〈0, 1〉 ∈ D4,1. After the extension, we get ExtB(〈0, 1〉) = 〈0, 5〉. As one can 
see, MLC S(ε, accct, cccat) = 4, which is not 2. Thus, after the extension, the MLCS length is increased by 3, not 1.

Dominate is to merge two sets of 2-tuples and to remove all 2-tuples that are dominated by others. In other words, 
the input set for Dominate may not be a dominating set, while its output is a dominating set. For example, suppose 
W = {〈1, 1〉, 〈2, 0〉, 〈2, 4〉}. We get Dominate(W ) = {〈1, 1〉, 〈2, 0〉}, since 〈2, 4〉 is dominated by 〈2, 0〉.

Theorem 1. Dk,s = Dominate(Dk−1,s ∪ ExtA(Dk−1,s−1) ∪ ExtB(Dk−1,s−1)), 1 ≤ k, s ≤ r.

Proof. For each 〈x′, y′〉 ∈ Dk−1,s ∪ ExtA(Dk−1,s−1) ∪ ExtB(Dk−1,s−1), if MLC S(A1..x′ , B1..y′ , T1..k) = s and it is dominated by 
others, it can be obviously done. So, our proof focuses on that 〈x′, y′〉 will be dominated by another 2-tuple in Dk,s if 
MLC S(A1..x′ , B1..y′ , T1..k) ≥ s + 1.

• Consider the case for ExtA(Dk−1,s−1) ∪ ExtB(Dk−1,s−1).
Let 〈i1, j1〉 ∈ Dk−1,s−1. Suppose ExtA({〈i1, j1〉}) ∪ ExtB({〈i1, j1〉}) = {〈x, j1〉, 〈i1, y〉}. By Fact 2, we have

Case 1: MLC S(A1..x, B1.. j1 , T1..k) = s + λ, λ ≥ 0,

Case 2: MLC S(A1..i1 , B1..y, T1..k) = s + μ, μ ≥ 0.

For case 1, we consider the following cases:
Case (a): If λ = 0, then MLC S(A1..x, B1.. j1 , T1..k) = s.
Case (b): If λ > 0, then by applying Lemma 1 λ times, we can find 〈x1, y1〉, x1 ≤ x and y1 ≤ j1, such that

MLC S(A1..x1 , B1..y1 , T1..k) = s.

It implies that 〈x1, y1〉 dominates 〈x, j1〉. 〈x, j1〉 will be removed after the Dominate function is applied. Thus, 〈x, j1〉
cannot be in Dk,s . The proof for case 2 is similar.
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Table 2
The construction of Dk,s in our MLCS algorithm with A = acg , B = ccca and 
T = actcgc.

Round i s (length)

0 1 2 3 4 5

1 D0,0 D1,1 D2,2

〈0,0〉 〈0,4〉 〈1,1〉
〈1,0〉 〈2,0〉

��〈2,4〉
2 D1,0 D2,1 D3,2 D4,3 D5,4 D6,5

〈0,0〉 〈0,1〉 〈1,1〉 〈1,2〉 〈3,1〉 〈3,2〉
��〈0,4〉 〈2,0〉 〈2,1〉 ��〈3,2〉
〈1,0〉 ��〈2,1〉
��〈2,0〉

• Consider the case for Dk−1,s .
Suppose that there exists 〈i2, j2〉 ∈ Dk−1,s such that

MLC S(A1..i2 , B1.. j2 , T1..k) = s + λ, λ ≥ 1.

Then by applying Lemma 1 λ times, we find 〈x2, y2〉, x2 ≤ i2 and y2 ≤ j2, such that

MLC S(A1..x2 , B1..y2 , T1..k) = s.

It implies that 〈x2, y2〉 dominates 〈i2, j2〉. 〈i2, j2〉 will be removed after the Dominate function is applied. Thus, 〈i2, j2〉
cannot be in Dk,s .

According to the above, for 〈x′, y′〉 ∈ Dk−1,s ∪ ExtA(Dk−1,s−1) ∪ ExtB(Dk−1,s−1), where MLC S(A1..x′ , B1..y′ , T1..k) > s, 
〈x′, y′〉 will be dominated by another 2-tuple in Dk,s . And after the Dominate function is applied, all dominated elements 
will be removed. Therefore, the theorem holds. �

With Theorem 1, the MLCS problem can be solved by calculating Dk,s . For easy implementation of Dominate, we should 
keep the data set of the 2-tuples by increasing order in the first dimension and decreasing order in the second dimen-
sion. With this arrangement, we can merge two data sets and eliminate those dominated 2-tuples by the linear merging 
scheme. The pseudo code of our MLCS algorithm is shown in Algorithm 1. Theorem 1 is implemented by function Generate

(described in Function 1).

Algorithm 1 Computing the MLCS length and Dk,s .
Input: Sequences A = a1a2a3 . . .am , B = b1b2b3 . . .bn and T = t1t2t3 . . . tr

Output: Length of MLC S(A, B, T )

1: Construct the arrays of next A and nextB // next character position
2: L ← 0
3: for i = 1 → r do
4: Set Di−1,0 = {〈0, 0〉}
5: for s = 1 → r − i + 1 do
6: k ← i + s − 1
7: Dk,s ← Generate(Dk−1,s , Dk−1,s−1)
8: if Dk,s = ∅ then
9: break

10: if s > L then
11: L ← s
12: if i > r − L then
13: break
14: return L

The main loop (containing lines 3 through 13) constructs Dk,s with the row-major scheme as the example shown in 
Table 2. In the ith round (lines 5 through 9), it scans T sequentially starting from ti to construct sets Di,1, Di+1,2, Di+2,3, 
· · · , Di+s−1,s until the set cannot be constructed, where s = MLC S(A1..m, B1..n, T1..(i+s−1)), the maximum length that can 
be obtained in this round. Generate in Line 7 implements Theorem 1. Line 8 decides whether the termination condition 
is satisfied or not in this round. In lines 10 and 11, L stores the maximum length s in this round. We quit our MLCS 
algorithm when i > r − L in lines 12 and 13, because the maximum length of the ith round is r − i + 1. Thus, after 
round i + 1, the maximum length will be no more than the current L. Eventually, the final L represents the length of 
MLC S(A1..m, B1..n, T1..r).

Now, we explain the details of the example shown in Table 2, where A = acg , B = ccca and T = actcgc. In the first 
round, we first set D0,0 = {〈0, 0〉}, and then D1,1 is constructed from Dominate(D0,1 ∪ExtA(D0,0) ∪ExtB(D0,0)) according to 
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Function 1 Generating Dk,s by extending Dk−1,s−1 and uniting Dk−1,s .
Input: Dk−1,s and Dk−1,s−1
Output: Dk,s

1: function Generate(Dk−1,s , Dk−1,s−1)
2: Wa, Wb ← ∅
3: for 〈ic , jc〉 ∈ Dk−1,s−1 (c = 1 to |Dk−1,s−1|) do // ic ( jc ) is strictly increasing (decreasing)
4: if (i′c ← next A(tk, ic)) ≤ m then Append 〈i′c, jc〉 into Wa // ExtA

5: if ( j′c ← nextB (tk, jc)) ≤ n then Append 〈ic, j′c〉 into Wb // ExtB

6: D ← Dominate(Dk−1,s, Wa) // Dominate(Dk−1,s ∪ ExtA)

7: D ← Dominate(D, Wb) // Dominate(Dominate(Dk−1,s ∪ ExtA) ∪ ExtB)

8: Return D
9: end function

Function 2 Merging two 2-tuple lists and eliminating dominated 2-tuples.
Input: 2-tuple lists L1 and L2, which are nondecreasing and nonincreasing in the first and second dimensions, respectively
Output: Merged and non-dominated 2-tuple list R

1: function Dominate(L1, L2)
2: R ← ∅
3: while L1 �= ∅ or L2 �= ∅ do
4: 〈is, js〉 ← the non-null smaller one of the first 2-tuples of L1 and L2

5: 〈ir , jr〉 ← the last 2-tuple of R
6: if (〈is, js〉 dominates 〈ir , jr〉) then Replace 〈ir , jr〉 with 〈is, js〉
7: else if ( 〈ir , jr〉 dominates 〈is, js〉) then Discard 〈is, js〉
8: else Append 〈is, js〉 into R

9: Return R
10: end function

Theorem 1. D0,1 is an empty set by Fact 1. Thus, D1,1 = {〈0, 4〉, 〈1, 0〉}. Then D2,2 can be constructed from Dominate(D1,2 ∪
ExtA(D1,1) ∪ ExtB(D1,1)). Note that 〈2, 4〉 is removed, since 〈2, 4〉 is dominated by 〈2, 0〉. Thus, D2,2 = {〈1, 1〉, 〈2, 0〉}. D3,3
is an empty set, because we cannot extend any 2-tuple from set D2,2. Accordingly, the first round stops. In the second 
round, D2,1 can be constructed from D1,0 and D1,1. Repeating the above steps, we get D2,1, D3,2, D4,3, D5,4 and D6,5 in 
this round. Our MLCS algorithm terminates since the optimal length is got in the second round, which is r − i +1. Therefore, 
the length of MLC S(A1..m, B1..n, T1..r) = 5.

Now, we go into the details of the two functions, Generate and Dominate. The main action of Generate is to extend 
one more character in T and it considers the matching characters only, such as ai = tk or b j = tk . To find out the matching 
pairs efficiently, we build a character table with Peng’s algorithm [29]. In the character table, the function next A(α, i) = i′
denotes the next position of character α in A after position i. i′ = ∞ if no such i′ can be found. It takes O (m|�|) time to 
construct the character table of A in the preprocessing stage, where |�| denotes the number of distinct characters in A. It 
requires only constant time to get the answer of next A(α, i). Similarly, the character table of B can also be constructed.

The Generate function is shown in Function 1. We use next A and nextB to find the index of the first matching character 
tk after aic and b jc , respectively. If we extend successfully 〈ic, jc〉 to another 2-tuple 〈i′c, j′c〉, then it is true that i′c ≤ m and 
j′c ≤ n. Obviously, Theorem 1 can be rewritten as Dk,s = Dominate(Dominate(Dk−1,s ∪ ExtA(Dk−1,s−1)) ∪ ExtB(Dk−1,s−1)), 
which is implemented in lines 6 and 7.

We check the domination in Dominate (Function 2). Since the two 2-tuple lists input to the function are arranged as 
that they are nondecreasing and nonincreasing in the first and second dimensions, respectively, the job for removing the 
dominated 2-tuples can be easily done with the linear merging scheme.

Theorem 2. Algorithm 1 solves the MLCS problem in O (n|�| + (r − L + 1)Lm) time and O (n|�| + Lm) space.

Proof. By Theorem 1, Algorithm 1 is correct. The preprocessing stage (line 1) takes O ((m + n)|�|) = O (n|�|) time to 
construct the arrays of next A and nextB . The outer loop in lines 3 through 13 is executed exactly (r − L + 1) times. (The loop 
breaks when i > r − L.) The inner loop in lines 5 through 9 is executed at most L times, and each Generate and Dominate

can be done in O (|D|) time, where |D| ≤ m. Thus, the time complexity is O (n|�| + (r − L + 1)Lm).
For the space complexity, there are (r − L +1) iterations in the outer loop, the length of each iteration (lines 5 through 9) 

is at most L, and the number of tuples in each Dk,s can be no more than m. For practical implementation of Algorithm 1, 
the space of Dk−1,s can be reused as the storage of Dk,s . In other words, all iterations in the outer loop can share the same 
storage space. Thus, the space complexity is O (n|�| + Lm). �
4. Our block-merged LCS algorithm

With slight modification of our MLCS algorithm, we can also solve the BMLCS problem by properly dealing with EOB 
(end of a block). In our MLCS algorithm, the function Generate is to extend Dk−1,s−1 to Dk,s , which finds the next match 
of tk from A or B . As for the BMLCS problem, we need to modify it to be suitable for blocked merged sequences. Here, 
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Table 3
An example of our BMLCS algorithm for A = a#cg#, B = ccc#a#
and T = actcgc.

Round i s (length)

0 1 2 3 4

1 D0,0 D1,1 D2,2

〈0,0〉 〈0,4〉 〈1,1〉
〈1,0〉 〈2,0〉

��〈2,4〉
2 D1,0 D2,1 D3,2 D4,3 D5,4

〈0,0〉 〈0,1〉 〈1,1〉 〈1,2〉 〈3,3〉
��〈0,4〉 〈2,0〉 〈3,1〉
〈1,0〉
��〈2,0〉

the modified function is named BGenerate. Suppose 〈i, j〉 ∈ Dk−1,s−1. By considering each character position of the merging 
block sequences A and B , there are three possibilities of EOB situation:

(1) ai ∈ E O B and b j ∈ E O B ,
(2) ai ∈ E O B and b j /∈ E O B ,
(3) ai /∈ E O B and b j ∈ E O B .

For case 1, we find the next matching character freely from the rest of merging block sequences of A and B . This is the 
same as Generate. For cases 2 and 3, one of these two characters is not the end character of a block (it is inside a block). 
If ai ∈ E O B and b j /∈ E O B , we cannot extend 2-tuples from A since both b j and the next matching character are within the 
same block. Case 3 is similar to case 2. According to the above, we present our new generation in the following.

First, we introduce a new function BlockPos. Given a merging block sequence S , BlockPos (S, i) = i′ denotes the position 
of character si′ after si such that si′ ∈ E O B of S . If si ∈ E O B of S , then i′ = i. The calculation of BlockPos(A, i) and 
BlockPos(B, j), 0 ≤ i ≤ m and 0 ≤ j ≤ n, can be done in O (m) and O (n) time in the preprocessing stage, respectively.

The spirit of our new generation function BGenerate is to ensure that the position of the non-extended sequence must 
be in E O B . If aic /∈ E O B of A or b jc /∈ E O B of B , we apply the function BlockPos to find the proper position icB or jcB .

Function 3 Generating Dk,s by extending Dk−1,s−1 and uniting Dk−1,s for BMLCS.
Input: Dk−1,s and Dk−1,s−1
Output: Dk,s

1: function BGenerate( Dk−1,s , Dk−1,s−1)
2: Wa, Wb ← ∅
3: for each 〈ic , jc〉 ∈ Dk−1,s−1 (c = 1 to |Dk−1,s−1|) do
4: i′c ← next A(tk, ic)

5: j′c ← nextB (tk, jc)

6: if (i′c ≤ m) then
7: if jc ∈ E O B of B then Append 〈i′c, jc〉 into Wa

8: else if ( jcB ← BlockPos(B, jc)) < j′c then
9: Append 〈i′c, jcB 〉 into Wa // BExtA

10: if ( j′c ≤ n) then
11: if ic ∈ E O B of A then Append 〈ic , j′c〉 into Wb

12: else if (icB ← BlockPos(A, ic)) < i′c then
13: Append 〈icB , j′c〉 into Wb // BExtB

14: D ← Dominate(Dk−1,s Wa) // Dominate(Dk−1,s ∪ BExtA)
15: D ← Dominate(D, Wb) // Dominate(Dominate(Dk−1,s ∪ BExtA) ∪ BExtB)

16: return D
17: end function

An example of our BMLCS algorithm is shown in Table 3, where A = a#cg#, B = ccc#a# and T = actcgc. In the first 
round, we first set D0,0 = {〈0, 0〉}, and then D1,1 is constructed from Dominate(D0,1 ∪ BExtA(D0,0) ∪ BExtB(D0,0)). Here,
BExtA and BExtB have the similar concept of ExtA and ExtB but with blocks. D0,1 is an empty set by Fact 1. Then we 
find the first matching character a (t1) freely from A and B since 〈0, 0〉 is in E O B of both A and B . Thus, we get D1,1 =
{〈0, 4〉, 〈1, 0〉}. Then D2,2 can be constructed by Dominate(D1,2 ∪ BExtA(D1,1) ∪ BExtB(D1,1)). Note that 〈2, 4〉 has to be 
removed, since 〈2, 0〉 dominates 〈2, 4〉. Thus, we get D2,2 = {〈1, 1〉, 〈2, 0〉}. The first round ends, because D3,3 is empty.

In the second round, we obtain D2,1 = {〈0, 1〉, 〈1, 0〉}. Repeatedly, we get D2,1, D3,2, D4,3 and D5,4 in this round. For de-
tails, we use D4,3 as an example of demonstration. D4,3 can be constructed by Dominate(D3,3 ∪BExtA(D3,2) ∪BExtB(D3,2)). 
When we extend 〈1, 1〉 ∈ D3,2 to D4,3, A is not considered since b1 /∈ E O B , and the index of the next matching character 
of t4 (c) after b1 is 2. So, 〈1, 2〉 is got. For the extension of 〈2, 0〉, we move the index of A to 3 since a2 /∈ E O B , and find 
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b1 = t4 by freely searching A and B . So, 〈3, 1〉 is got. The possible maximum length in the second round is r − i + 1, which 
is 5. We get the length 4 in the second round and the optimal length in the third round cannot be more than 4. Therefore, 
we stop our BMLCS algorithm at the second round.

In summary, Algorithm 1 can calculate the BMLCS length if we replace our extension function in Generate to that in
BGenerate. Let δ denote the maximum number of blocks of A and B , then we have Theorem 3.

Theorem 3. Algorithm 1 with BGenerate solves the BMLCS problem in O (n|�| + (r − L + 1)Lδ) time and O (n|�| + Lδ) space.

Proof. In the preprocessing stage, we take O ((m + n)|�|) = O (n|�|) time to construct arrays of next A and nextB , and 
O (m + n) = O (n) time to construct BlockPos. Since BGenerate(Dk−1,s−1, Dk−1,s) and Dominate(D, W ) can be done in 
O (|D|) time, where |D| ≤ δ. Thus, the time complexity is O (n|�| + (r − L + 1)Lδ). Similar to Theorem 2, the space of Dk−1,s
can be reused as the storage of Dk,s . The space complexity is O (n|�| + Lδ). �
5. Experimental results

To demonstrate the efficiency of our MLCS and BMLCS algorithms, we first compare the execution time of our algorithms 
and some previously published algorithms on pseudorandom sequences. Then we compare the efficiency of two superior 
algorithms, our MLCS algorithm and the bit-parallel MLCS algorithm [9], on some real DNA sequences. These algorithms are 
implemented by ourselves using Visual Studio C++ 2013 software, and tested on a computer with 64-bit Windows 7 OS, 
CPU clock rate of 3.2 GHz (Intel i5-4570) and 32 GB of RAM, or a computer with less power. The source codes and datasets 
for experiments can be found on our web site http :/ /par.cse .nsysu .edu .tw /~mlcs/ [20].

We produce some pseudorandom datasets for experiments to clarify the relation between the sequence similarity and 
execution time. These datasets are generated or mutated by the pseudorandom function of C++, which typically exhibits 
statistical randomness. Thus, we use the word “random” or “randomly” to describe the process for short.

The similarity of the input sequences for the MLCS (BMLCS) problem is defined as λ = solution length
min{|A|+|B|,|T |} . For example, 

when the similarity λ is 96%, the MLCS length is 1920 if |A| = |B| = 1000 and |T | = 2000. The pseudorandom datasets 
are generated with various lengths (1000, 2000, 5000), similarities (10% ∼ 100%), alphabet sizes (4, 64, 1000), and ratios 
γ = |A|

|T | = m
r (0.1, 0.2, 0.3, 0.4, 0.5), where |A| = m, |B| = n, |T | = r, and m + n = r.

Suppose that a dataset with similarity p is desired to be generated. Our method for randomly generating experimental 
data is presented as follows.

Step 1: Randomly generate T . Then, randomly put each character of T into either A or B in order.
Step 2: Compute the MLCS (BMLCS) of A, B and T , and calculate their similarity λ.
Step 3: If λ ∈ [p − ε, p + ε], output A, B and T , and stop. Otherwise, randomly mutate some characters of T , and go to 

Step 2. Here, we set ε = 1%.

The possible lowest similarity for randomly generated sequences depends on the alphabet set size. The larger the alpha-
bet set size is, the lower the degree of sequence similarity is. The algorithms for performance comparison are denoted as 
follows.

• DP: Huang’s DP algorithms of MLCS and BMLCS [15].
• Peng: Peng’s sparse DP algorithms of MLCS and BMLCS [29].
• Rahman: Algorithms of MLCS and BMLCS proposed by Rahman and Rahman [31].
• S-table: Huang’s BMLCS algorithm by using S-table [15].
• Bit: The bit-parallel MLCS algorithm [9] and the bit-parallel BMLCS algorithm [8] proposed by Deorowicz and Danek.
• Ours: Our MLCS and BMLCS algorithms presented in this paper.

5.1. Various length ratios of sequences A and T

In Fig. 1, we illustrate the influences of various length ratios γ = |A|
|T | with fixed |T | in different similarities. We use the 

format (|T |, γ , |�|, Algorithm) to represent the experiments of each chart. When the BMLCS algorithms are compared, the 
maximum number δ of blocks in A and B is added as the fifth parameter. For example, (2000, ∗, 64, ?) is used to express 
charts in left part of Fig. 1, where |T | = r = 2000, alphabet size |�| = 64, “∗” is a wildcard for representing all possible 
contents of the parameter γ , and “?” means different algorithms in different charts.

The experiment with a combination of parameters was repeated 100 times to get the average execution time for all 
algorithms when |T | = 1000 or |T | = 2000. The experiment was repeated 100 times for our and bit-parallel algorithms 
when |T | = 5000, but there are only 5 times for the other three algorithms when |T | = 5000, because the other three 
algorithms require much more execution time.

Though we have performed all experiments with many various combinations of parameters, Fig. 1 only illustrates 
(2000, ∗, 64, ?) and (5000, ∗, 1000, ?), since the other experiments have similar results (for example, the cases of |T | = 1000
are not shown). Observing Fig. 1, we obtain the following facts.

http://par.cse.nsysu.edu.tw/~mlcs/
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Fig. 1. The comparison of execution time with various γ in (2000,∗,64,?) and (5000,∗,1000,?).
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Fig. 2. The average execution time of various MLCS algorithms in (2000,0.5,?,∗) and (5000,0.5,?,∗).

First, it is obvious that all curves of DP and Bit are almost horizontal, which means that they take no advantage of 
sequence similarity. As expected, our algorithm works better on sequences with high similarities. However, the other two 
are efficient when the matchings are sparse, that almost means low similarities, although sparse matchings may not be 
completely identical to low similarities.

Second, all algorithms have the worst performance when γ is near 0.5. It is easy to understand from the time complex-
ities of all algorithms. Since their time complexities are almost proportional to mn or mr, where m ≤ n and m + n = r, mn
or mr has the maximal value theoretically when m = n = r

2 , i.e. γ = 0.5. For easy explanation, we set γ = 0.5 in all of the 
following experiments, except the real DNA cases.



86 K.-T. Tseng et al. / Theoretical Computer Science 708 (2018) 75–90
Fig. 3. The average execution time of various BMLCS algorithms in (2000,0.5,?,∗,5) and (5000,0.5,?,∗,5).

Third, (r − L + 1)Lm is the main part of our time complexity O (n|�| + (r − L + 1)Lm), and (r − L + 1)Lm has the maximal 
value theoretically when L = r

2 , whose similarity is 50%. As we can see in chart (5000, *, 1000, Ours), the curves are almost 
the highest when the similarities are near 50%.

5.2. Comparison of various algorithms

Fig. 2 shows the average execution times of the MLCS algorithms, where the x-axis represents the similarity of input se-
quences. It is hard to generate sequences with low similarity when |�| is small. For example, we did not test the sequences 
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Fig. 4. The average execution time of various BMLCS algorithms in (2000,0.5,?,∗,10) and (5000,0.5,?,∗,10).

of similarities lower than 80% with |�| = 4. Since the performance of some algorithms is far worse than the others, there 
is a gap on the y-axis in some charts. Moreover, some results are even not displayed in the chart, because their curves fall 
outside the chart.

Fig. 2 indicates that the performance of our MLCS algorithm is always better than the algorithms of DP, Peng, and 
Rahman. It is clear that only our and bit-parallel MLCS algorithms may compete for the winner. Our MLCS is very efficient 
when the input sequences are extremely similar. For example, when the sequence similarity exceeds 96% with |�| = 4, 
our MLCS algorithm is the most efficient among all algorithms. Our algorithm is the winner when the sequence similarity 
exceeds 80% with |�| = 64 or |�| = 1000. In other words, it reveals that the larger |�| is, the lower similarities we need 
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Fig. 5. The comparison of execution time between our and bit-parallel MLCS algorithms in real DNA sequences.

for our algorithm to be the winner. The other thing to be noticed is that in the case of |�| = 1000, our MLCS algorithm 
with similarity lower than 30% is also the winner, because the main part (r − L + 1)Lm of our time complexity O (n|�| +
(r − L + 1)Lm) is small when L is low.

Figs. 3 and 4 illustrate the average execution time of BMLCS algorithms for various alphabet sizes, with two different 
numbers of blocks (α = β = 5 and α = β = 10) in sequences A and B , respectively. Figs. 3 and 4 show that the perfor-
mances of DP, S-table and bit-parallel BMLCS algorithms are almost independent of sequence similarity. There is a great 
improvement for the DP algorithm in computing time when the BMLCS problem is applied. For example, the DP algorithm 
needs over 400 s in chart (5000, 0.5, 4, ∗) of Figs. 2, but it takes only 3 or 4 s in the same case with 5 or 10 blocks of A and 
B in chart (5000, 0.5, 4, ∗, 5) or (5000, 0.5, 4, ∗, 10). Thus, the DP algorithm works better with fewer blocks. The behavior 
of our BMLCS algorithm is almost the same as that of our MLCS algorithm. The efficiency of our algorithm depends on the 
input sequence similarity, and has a better performance in a small number δ of blocks. It can still be seen that our BMLCS 
algorithm is the winner when the input sequences are very similar.

5.3. Real DNA sequences

The experimental materials are 31 sets of real DNA sequences, coming from two yeast species Saccharomyces cerevisiae
and Kluyveromyces waltii [18]. In the “Supplementary info” of provided URL in [18], there are raw nucleotide sequences of all 
predicted Open Reading Frames (ORFs), which form the source of our sequence T . We then use the information in “Matches 
by chromosome” to find gene correspondences and make them into nucleotide sequences as our sequences A and B by 
[10]. Some statistical data of these real DNA sequences are given as follows. 15237 ≤ |T | ≤ 56451, 8405 ≤ |A| ≤ 50835, 
14523 ≤ |B| ≤ 61695, 0.570 ≤ γ = |A|

|T | ≤ 1.047, 1.237 ≤ |A|+|B|
|T | ≤ 2.171, and 88.35% ≤ similarity ≤ 100%. Since our and 

bit-parallel MLCS algorithms are competitive, Fig. 5 only shows the execution time of these two algorithms. It can be seen 
that our algorithm is faster than the bit-parallel MLCS algorithm when the similarity is greater than 96%. The experimental 
results of the real DNA sequences is consistent with the results in Fig. 2 for pseudorandom sequences with |�| = 4. These 
results reveal no difference between pseudorandom and real sequences. Thus, it is feasible to evaluate the behaviors of 
MLCS algorithms in various parameters by using pseudorandom sequences.

6. Conclusion

In this paper, we first propose an MLCS algorithm with O (n|�| + (r − L + 1)Lm) time and O (n|�| + Lm) space, where r
and L denote the lengths of T and MLCS, respectively, and m and n denote the minimum and maximum lengths of A and B , 
respectively. With slight modification, our MLCS algorithm can also solve the BMLCS problem in O (n|�| + (r − L + 1)Lδ)

time and O (n|�| + Lδ) space, where δ denotes the maximum number of blocks in A and B . By the time complexity, our 
algorithms are efficient when L is large, i.e. the input sequences are similar.

We compare the execution efficiency of our algorithms with some previously published MLCS and BMLCS algorithms on 
pseudorandom and real DNA sequences. The experimental results show that our algorithms are better than algorithms of 
Huang et al. [16], Peng et al. [29], and Rahman and Rahman [31], which are DP-based algorithms. Our algorithms are faster 
than previous MLCS and BMLCS algorithms when the input sequences are very similar. It is reasonable to assume that input 
sequences have high similarities. In 2000, Batzoglou et al. showed that coding regions of mRNA sequences between humans 
and mice are approximately 85% identical [5]. In 2001, Venter et al. in Human Genome Project (HGP) concluded that we are 
99.9% genetically similar to other people [37]. In 2005, Varki and Altheide proposed that the difference between genomes 
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of humans and chimpanzees is 4%, i.e. 96% of genomes are identical [36]. Then, in 2007, Pontius et al. found that about 90% 
of the genes in the Abyssinian domestic cat are similar to humans [30]. In the real DNA sequences of our experiments, the 
segments of two yeast species Saccharomyces cerevisiae and Kluyveromyces waltii [18] has similarity higher than 88%.

However, for the case that sequence T is much longer than the length sum of A and B , our algorithms may not perform 
so well since |T | = r becomes the dominant term in our time complexity O (n|�| + (r − L + 1)Lm). The reason is that the 
extension of A and B is done along the progress of T . Fortunately, in the real applications, |A|+|B|

|T | is not too large, neither 
too small.

It is worthy to apply our algorithm to other variants of the LCS problem, such as the constrained LCS problem. In 
addition, the efficiency of bit-parallel algorithms is increasing with technological advance. It may be interesting to speed-up 
our algorithms with the bit parallelism technique in the future.
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