
ENHANCEMENT OF FLOWER CLASSIFICATION WITH THE PROFILE
FEATURE

1Wei-Hao Fu, 2Kuo-Tsung Tseng, 3Chiou-Yi Hor, 1Chang-Biau Yang

1Department of Computer Science and Engineering,
National Sun Yat-sen University, Kaohsiung, Taiwan

2Department of Shipping and Transportation Management
National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan

3China Steel Corporation, Kaohsiung, Taiwan
E-mail: cbyang@cse.nsysn.edu.tw

ABSTRACT

In this paper, we propose an elegant method, based on ma-
chine learning, for the flower classification. There are three
stages in our method. The process begins with segmenting
the flower images and removing their backgrounds. Then,
we extract the features from the foreground, including color
features and texture features. Finally, we train the SVM (sup-
port vector machine) models and Adaboost models with sev-
eral feature combinations. The experimental material comes
from the Oxford-102 category flower dataset. Our proposed
feature, named the profile feature, improves about 2% ac-
curacy in the SVM model and about 3% in our ensemble
model. It outperforms all models without deep-learning (Ten-
sorFlow inception-v3 model). The proposed profile feature
comes from the flower recognition of human, such as num-
ber of petals, colors and edges of a flower. Our best result
is 83.57% in accuracy, which is obtained by aggregating sev-
eral classification models with inception-v3 model. The size
of the profile feature is 26 words (1 word = 32 bits), and the
other features in SVM have size thousands of words. Note
that a full image (200×200) with size thirty thousands words
is used in inception-v3 model. Thus, the proposed profile fea-
ture is very effective in storage size for improving the classi-
fication accuracy.

Index Terms— Flower Classification, Segmentation,
Feature Extraction, Profile Feature, SVM, Adaboost,
Inception-v3 Model.

1. INTRODUCTION

In our daily life, there is a variety of flowers everywhere,
but it is a pity that sometimes we cannot tell what kinds of
flowers they are. To recognize these flowers, one may go
through many books and conduct some survey. It may be
time-consuming for recognizing flowers manually. However,

the story may be different if the task can be solved by comput-
ers or mobile devices automatically. One no longer needs to
know all kinds of flowers; instead, a computer can be trained
to do the same work.

In this paper, two kinds of features, color and texture, are
used to perform the flower classification work. Color features
consist of HSV (hue, saturation and value) [1, 2] histogram
and CIELAB [3] histogram; texture features contain SIFT
(scale-invariant feature transform) [4, 5], SURF (speeded up
robust features) [6, 7] and our proposed features, named ”Pro-
file”. The profile features include the ratio of the longest
length and shortest length of a flower, number of petals, color
set of a flower center and edge of a flower and moment fea-
ture. We use various combinations of the above features
for training a good flower classification model. Finally, we
achieve 83.57 % accuracy on Oxford-102 flowers dataset [8].

This paper is organized as follows. We introduce the rel-
evant research of image classification in Section 2, and our
method is presented in Section 3. Our experiments are shown
in Section 4. Finally, our conclusion is given in Section 5.

2. PRELIMINARIES

Nilsback and Zisserman [9] proposed a flower classification
method in 2008. They used some various combinations of
features to improve the classification accuracy and obtained
a good performance. Before extracting features, they divided
each flower image into flower and background regions. Then
they extracted the HSV, HOG (histogram of oriented gradi-
ents) [10] and SIFT descriptors. Finally, they trained a clas-
sification model with SVM [11, 12] and got the classifica-
tion accuracy 72.8% on Oxford-102 flowers dataset. In 2009,
Nilsback [13] added CLAY (color layout) feature and HLAY
(HOG layout) feature to improve their method. He trained
a classification model like the previous method and finally
achieved 76.3% accuracy on Oxford-102 flowers dataset.



In 2010, Ito et al. [14] proposed a method based on
HOG and co-occurrence features. The co-occurrence fea-
ture is usually more effective than the single feature because
the co-occurrence feature of two events provides more in-
formation. For example, a color histogram shows the fre-
quency of each color only, while the co-occurrence color his-
togram provides the frequency of co-occurrence of pairs of
colors. They proposed three features based on co-occurrence
feature, color-CoHoG (color-co-occurrence histogram of ori-
ented gradients), CoHED (co-occurrence between edge ori-
entation and color difference) and CoHD (co-occurrence his-
togram of pairs of edge orientations and color difference).
Then they trained a LIBLINEAR [15] model with these three
features and achieved 74.80% accuracy on Oxford-102 flow-
ers dataset.

In 2011, Chai et al. [16] proposed a co-segmentation
method, BiCoS (bi-level co-segmentation). Segmentation is
an important step in image classification. Segmentation fo-
cuses on the object and improves the accuracy by removing
the noise in the image. They used the GrabCut [17, 18, 19]
method to segment an image into foreground and background
regions. Every superpixel is assigned a label with either fore-
ground or background. They collected all superpixel labels
and trained a linear SVM to recognize the attribute of a re-
gion, either foreground or background. They generated the
BOW (bag-of-words) histogram of Lab color and SIFT fea-
tures. They trained an SVM model with the two features and
achieved 80.00% accuracy on Oxford-102 flowers dataset.

In 2013, Angelova et al. [20] proposed an efficient object
detection and segmentation method. They used RGB (red,
green and blue) and HOG as features to train the SVM model
for dividing an image into foreground and background re-
gions. Then they used the same features from foreground re-
gions to train the SVM classifier and finally achieved 80.66%
accuracy on Oxford-102 flowers dataset.

Later in the recent years, deep learning is more mature
and often gives people a surprising result. Contrast to tradi-
tional methods, deep learning focuses on the architecture of
neural network and the computation. In 2015, Yoo et al. [21]
proposed a multi-scale pyramid pooling method for better uti-
lization of neural activations from a pre-trained CNN (convo-
lution neural network). They achieved 91.28% accuracy on
Oxford-102 flowers dataset.

In 2016, Liu et al. [22] trained a CNN model to solve
the problem of flower classification. The architecture of their
CNN model contains eight layers with weights. The first five
layers are convolutional layers and the rest layers are fully-
connected layers. They used local response normalization,
overlapping pooling and dropout method to improve the accu-
racy of flower classification. They achieved 84.02% accuracy
on Oxford-102 flowers dataset.

In 2017, Xia et al. [23] used the transfer learning to train
the inception-v3 model [24, 25] to classify the flowers. They
achieved 94.00% accuracy on Oxford-102 flowers dataset.

Though the recent methods based on deep-learning or
TensorFlow for flower classification may achieve an excellent
accuracy, these methods need more data and time for training
their models, and may not be so practical in some cases.

3. THE PROPOSED ALGORITHM

In this section, we present our method in which the profile fea-
ture is added. The size of the profile feature is 26 words only,
but it increases the flower classification accuracy about 2% in
the SVM model and about 3% in the ensemble model. The
improvement is effective with such little increment in feature
size. The method is divided into three stages, including im-
age segmentation, feature extraction and classification model
training.

3.1. Image Segmentation

Before extracting the features, the segmentation process is to
partition each image into the foreground and background re-
gions, and then remove the background region. We utilize the
GrabCut [17] algorithm in OpenCV [26] to extract the fore-
ground region. The GrabCut [17] algorithm needs a boundary
rectangle that encloses the foreground. The detailed process
is presented as follows.

Step 1: We set the initial rectangle as the whole image. That
is, its four boundary lines are placed on the top, left,
bottom and right of the image. For each boundary, the
similarity from the current line to its next inner line by
means of RGB colors is calculated. If the similarity is
less than a threshold, it means that there is significant
difference and the search process stops for this bound-
ary. On the other hand, the search process goes on by
shifting the boundary line toward the inner part. After
the process has been carried out on the four boundary
lines, a shrunk rectangle that covers the foreground is
obtained.

Step 2: We build the second rectangle by extension starting
from the center point. We use Laplacian zero crossing
method to locate the boundaries in the image. For each
direction, we find the most appropriate candidates. We
then get a rectangle by combining these points.

Step 3: We average the two rectangles obtained in Steps 1
and 2 to get a refined rectangle for representing the
boundary of the foreground region.

Step 4: The GrabCut program in OpenCV is applied to ex-
tract the foreground region with the boundary rectan-
gle.

Figure 1 shows an example for illustrating the segmenta-
tion process.



Fig. 1. The image segmentation process. (a) An original im-
age. (b) The boundary of the foreground region. (c) The result
of segmentation.

Table 1. The feature sets used in this paper and their sizes (in
words). The various sizes of a feature set are obtained with
different scales. 1 word denotes 32 bits.

Feature name Size 1 Size 2 Size 3 Size 4
HSV 692 346 180 90

CIELAB 768 384 192
SIFT 400
SURF 400
Profile 26
Whole image (200× 200× 3÷ 4) 30000 words

3.2. Feature Extraction

After an image is segmented, we extract the features from the
image. The features used in this paper are listed in Table 1.

For feature representation, we use the histogram to denote
the HSV feature and CIELAB feature. The values in HSV are
H, S, and V, where four different scales are used. For the first
size of HSV, the range of H is between 0 and 179; the range of
S is between 0 and 255; the range of V is between 0 and 255.
Thus, the first size, 692, is calculated with 180 + 256 + 256.
The second size, 346, is calculated with 90+ 128+ 128. The
third size, 180, contains only the H value. The last size, 90,
uses the H value only, whose dimension is reduced from 180
to 90.

Compared with the RGB color model, the CIELAB one
is closer to our eye perception. Connolly and Fleiss [3] pro-
posed an easy way to transform RGB values to CIELAB val-
ues. The values in the CIELAB color space are given as fol-
lows [3].

• L represents the luminance.

• a represents the color between green and red.

• b represents the color between blue and yellow.

For the first size of CIELAB, the range of the three values
is between 0 and 255. Thus, the first size, 768, is calculated
with 256 + 256 + 256. The second size, 384, is calculated
with 128 + 128 + 128, whose values are reduced from 256

to 128. The last size, 192, is calculated with 64 + 64 + 64,
whose values are reduced from 256 to 64.

Lowe proposed the scale-invariant feature transform
(SIFT) for image recognition, which has great effect for ob-
ject recognition, image stitching, 3D modeling, etc. [4, 5].
It consists of four main stages, including scale-space extrema
detection, key point localization, orientation assignment, and
key point descriptor.

Speeded up robust features (SURF) [6] is a local feature
detector and descriptor. It is claimed that SURF was designed
to improve SIFT, so SURF is similar to SIFT in several ways.
The algorithm is composed of four stages, including image in-
tegration, fast Hessian detection, orientation assignment and
key point descriptor.

We use the bag-of-words [5] histogram to represent SIFT
and SURF features. According to some primitive experi-
ments, we set the dictionary size as 400 for both SIFT and
SURF features. Inception-v3 model is an CNN model with
a scaled image as its input. We use the transfer learning to
transform the last layer to the Oxford-102 flower dataset. The
original image size is about 400 × 600 and the scaled im-
age size is 200 × 200. So, the input size of inception-v3 is
about 200 × 200 × 3 ÷ 4 = 30000 words (RGB and 4 bytes
per word). In Table 1, the unit of size is “word”, where one
“word” is represented by 4 bytes.

3.3. Profile Feature

We propose the profile feature to describe the entire flower in
the global view. We extract the contour of a flower image as
follows.

Step 1: After segmentation and removing background, If
there are more than one distinct object in an image, we
find the biggest one as the target. Then we calculate the
center point of the target.

Step 2: We calculate the distance from the center point to
every contour point from degree 0 to degree 359. Then
we get 360 contour distances.

Step 3: Find the first three longest distances l1, l2 and l3
among the 360 contour distances. And find first three
shortest distances s1, s2 and s3. Then calculate three
length ratios by s1+s2+s3

3l1
, s1+s2+s3

3l2
and s1+s2+s3

3l2
.

Figure 2 shows the steps of the above contour feature ex-
traction. We extract some features from the contour and orig-
inal image as the profile feature in the following. Table 2
shows the detailed size of each feature in the profile feature
set.

1. Color: The center point and contour have different colors
for some flowers, such as sunflower and pink primrose.
We use HSV and CIELAB (six values) to represent the
colors of center point and contour points. These values



Fig. 2. The extraction of the 360-dimensional contour fea-
ture. (a.) The center point marked by the red color. (b) The
distance from each contour point to the center illustrated by
the red lines. (c.) The time series data constructed from the
360 normalized contour distances.

Table 2. The size of the profile feature.

Feature name Size (word)
Color 12

Length 3
Hu’s moment 7

Similarity 3
Petals 1
Total 26

of the center point are got by averaging 3× 3 subimage
in the center. These values of the contour points are
obtained by averaging all contour points with thickness
3 pixels.

2. Length: The three length ratios are got from the above
contour feature.

3. Hu’s moment [27]: We use the Hu’s seven moments to
describe the shape of flower. The moments are nor-
malized with respect to the geometric moments and are
arranged with respect to its center, so the moments have
the attributes of scale and rotation invariance.

4. Similarity between the flower shape and a circle:
Some flowers are circular in shapes but some are not.
We extract the longest, shortest and average contour
distances. Next, use these three distances as radiuses
to calculate three circle areas. Then compute the
three ratios from the three circle areas and the flower
area. These three area ratios are viewed as the shape
similarities heuristically.

5. Number of petals: We get the number of petals according
to the contour of flower.

3.4. Classification Models

After finishing the features extraction, the subsequent work
is to train classification models, SVM [11, 12] and Adaboost

Table 3. The SVM parameters used in this paper.

Parameter Value
SVM-type C-SVC

kernel Radial basis function
cost 1 to 100
γ 0.01 to 1

Table 4. The parameters of Adaboost used in this paper.

Parameter Value
classifier Random forest

numiterations 10 to 20
weightThreshold 50 to 100

[28, 29, 30, 31, 32, 33, 34, 35], with these features. We then
classify all testing flower images and calculate the classifica-
tion accuracy.

Among all SVM software tools, LIBSVM [12] is widely
used in academic researches. In this paper, we invoke LIB-
SVM to build SVM models. We try several parameter com-
binations for the SVM classifiers. Table 3 shows the range of
the SVM parameters.

Boosting [35] is a method for creating a highly accurate
predication model by combining several weak and inaccurate
learning methods. In 1996, Freund and Schapire [28] pro-
posed the Adaboost [28, 29, 30, 31] method. Adaboost is an
abbreviation of “Adaptive Boosting”, which means that the
error yielded from the previous classifier can be used to train
the next classifier. Table 4 shows the parameters of Adaboost.

4. EXPERIMENTAL RESULTS

In this section, we show our experimental results. These ex-
periments were performed on a PC equipped with an Intel(R)
Core(TM) i5-2400 CPU 3.10GHz and 20G RAM. Our exper-
imental dataset is the Oxford-102 flower dataset, containing
totally 8189 labeled images in 102 categories, in which each
category has 40 to 258 images. Figure 3 lists the 102-category
flowers.

To evaluate the classification accuracy, we divide the
dataset into three datasets, the training, validation and testing
datasets. There are 10 images in each category for training,
10 images in each category for validation and the rest of the
images for testing. We use the validation set to tune the pa-
rameters in our experiments, as shown in Table 3 and Table 4.
Then the above process is repeated for 100 times.

The accuracy is defined as the ratio of correct classifi-
cations over the total number of classifications. And, in the
following tables, each classification accuracy is the average
of 100 experimental results. Table 5 shows the accuracies
of SVM, Adaboost and inception-v3 with various features.



Fig. 3. The Oxford-102 flower dataset.

Table 5. The accuracies of SVM, Adaboost and inception-v3
with various features.

Feature
name

Size
(word)

Accuracy

SVM Adaboost
Inception-

v3

CIELAB 384 29.27% 43.25% -
HSV 90 21.43% 33.16% -
SIFT 400 49.04% 28.51% -
SURF 400 54.91% 35.72% -
Whole
image

30000 - - 77.48%

Profile 26 30.25% 34.59% -

Compared with other features, the size of the proposed profile
feature is tiny. The accuracy of the profile feature is compa-
rable to other features, except Inception-v3, with larger size.

Table 6 shows the accuracies of various feature sizes clas-
sified by SVM. Table 7 shows accuracies of various feature
sizes classified by SVM and Adaboost with the weighted vote.
The item inside parenthesis denotes the feature name, where
in front of the parenthesis is classifier name, and the number
following the feature is its size (dimension). For example,
“Adaboost(CIELAB384)” means that we use CIELAB with
size 384 to train an Adaboost model.

In Table 6, “with profile” means that the profile feature
and other features are combined together as an integrated fea-
ture within an SVM classifier, represented as the “&” opera-
tor. In Table 7, “with profile” means that the profile feature
is used in an individual SVM, and the classification results
are obtained by the weighted vote manner from several clas-
sifiers, represented as the “+” operator. That is, each flower
class j of a classifier i is assigned a class weight wij , which
is given by the classification accuracy during the training pro-
cess. In Tables 6 and 7, “ with inception-v3” is combined by
the “+” operator with other classifiers.

During the classification stage, for a testing image I , a
classifier i exports a class label j as well as its associated
probability pij . Then, the classified label of I is obtained by
the following weighted vote.

classified label of I = argmax
j

(
∑
i

wij × pij). (1)

In Table 6, the SVM model without inception-v3 model
can be improved about 1.8% accuracy if we add the pro-
file feature. Furthermore, the SVM model with inception-
v3 model can be improved about 0.8% accuracy with the
profile feature. In Table 7, our ensemble method without
inception-v3 model can be improved about 2.9% accuracy
with the profile feature. Additionally, our ensemble method
with the profile feature and inception-v3 model can be im-
proved about 0.5% accuracy. Table 8 shows the highest ac-



Table 6. The accuracies of various feature sizes classified by
SVM. Here, “&” means feature combination.

No. Classifiers

Accuracy
without

incpetion-v3
with

inception-v3
without
profile

with
profile

without
profile

with
profile

1
SVM(CIELAB768&
HSV692&SIFT400&
SURF400)

67.21% 69.00% 81.34% 82.18%

2
SVM(CIELAB768&
HSV346&SIFT400&
SURF400)

67.48% 69.26% 81.46% 82.29%

3
SVM(CIELAB768&
HSV180&SIFT400&
SURF400)

67.52% 69.44% 81.58% 82.32%

4
SVM(CIELAB768&
HSV90&SIFT400&
SURF400)

67.60% 69.57% 81.67% 82.46%

5
SVM(CIELAB384&
HSV692&SIFT400&
SURF400)

68.39% 69.83% 81.81% 82.56%

6
SVM(CIELAB384&
HSV346&SIFT400&
SURF400)

68.42% 70.12% 82.03% 82.67%

7
SVM(CIELAB384&
HSV180&SIFT400&
SURF400)

68.45% 70.19% 82.19% 82.79%

8
SVM(CIELAB384&
HSV90&SIFT400&
SURF400)

68.56% 70.33% 82.34% 83.01%

9
SVM(CIELAB192&
HSV692&SIFT400&
SURF400)

67.37% 69.23% 81.49% 82.24%

10
SVM(CIELAB192&
HSV346&SIFT400&
SURF400)

67.48% 69.37% 81.57% 82.43%

11
SVM(CIELAB192&
HSV180&SIFT400&
SURF400)

67.52% 69.46% 81.63% 82.52%

12
SVM(CIELAB192&
HSV90&SIFT400&
SURF400)

67.65% 69.64% 81.77% 82.63%

curacy of the ensemble combined from several classifiers and
other researches.

The profile feature is effective and compatible to other
feature with larger size, such as HSV or CIELAB. We think
that the profile feature is useful in some aspects. First, the
colors in the profile feature are practical, since many flow-
ers have different colors in the center and the contour. We use
this characteristic to classify these flowers and return good re-
sults. Second, the number of petals in a flower is an obvious
feature since different types of flowers usually have different
numbers of petals.

5. CONCLUSIONS AND FUTURE WORK

The inception-v3 model proposed by Xia et al. [23] can
achieve a very high accuracy of 94%. However, in our im-
plementation, we cannot achieve such high accuracy. We get
only 77.48%, as shown in Table 5. We think that more param-
eters in inception-v3 need to be tuned.

In this paper, we achieve the acceptable accuracy of
83.57% and outperforms all methods without deep-learning.
We propose an effective feature, named the “Profile” feature.
The “Profile” feature subset itself is not very prominent, but
it contains some complement information and thus may im-
prove classification accuracy when combining with other fea-
tures.

In the future, we may improve our method in three possi-
ble ways. First, we may segment other profile features such

Table 7. The accuracies of various feature sizes classified
by SVM and Adaboost. Here, “+” means the combination of
classification results with the weighted vote.

No. Classifiers

Accuracy
without

incpetion-v3
with

inception-v3
without
profile

with
profile

without
profile

with
profile

1

Adaboost(CIELAB768)+
Adaboost(HSV692)+
SVM(SIFT400)+
SVM(SURF400)

53.26% 56.41% 82.31% 82.89%

2

Adaboost(CIELAB768)+
Adaboost(HSV346)+
SVM(SIFT400)+
SVM(SURF400)

53.47% 56.54% 82.39% 82.94%

3

Adaboost(CIELAB768)+
Adaboost(HSV180)+
SVM(SIFT400)+
SVM(SURF400)

53.51% 56.73% 82.47% 83.00%

4

Adaboost(CIELAB768)+
Adaboost(HSV90)+
SVM(SIFT400)+
SVM(SURF400)

53.66% 56.92% 82.53% 83.07%

5

Adaboost(CIELAB384)+
Adaboost(HSV692)+
SVM(SIFT400)+
SVM(SURF400)

54.01% 56.86% 82.76% 83.21%

6

Adaboost(CIELAB384)+
Adaboost(HSV346)+
SVM(SIFT400)+
SVM(SURF400)

54.23% 56.95% 82.88% 83.34%

7

Adaboost(CIELAB384)+
Adaboost(HSV180)+
SVM(SIFT400)+
SVM(SURF400)

54.39% 57.14% 82.94% 83.39%

8

Adaboost(CIELAB384)+
Adaboost(HSV90)+
SVM(SIFT400)+
SVM(SURF400)

54.58% 57.33% 83.09% 83.57%

9

Adaboost(CIELAB192)+
Adaboost(HSV692)+
SVM(SIFT400)+
SVM(SURF400)

53.60% 56.52% 82.43% 82.95%

10

Adaboost(CIELAB192)+
Adaboost(HSV346)+
SVM(SIFT400)+
SVM(SURF400)

53.72% 56.58% 82.51% 83.04%

11

Adaboost(CIELAB192)+
Adaboost(HSV180)+
SVM(SIFT400)+
SVM(SURF400)

53.84% 56.67% 82.75% 83.25%

12

Adaboost(CIELAB192)+
Adaboost(HSV90)+
SVM(SIFT400)+
SVM(SURF400)

53.76% 56.65% 82.61% 83.18%

Table 8. The accuracies of various classifier combinations.

Method

Accuracy

Note
without

inception-v3
with

inception-v3
without
profile

with
profile

without
profile

with
profile

SVM(CIELAB384&
HSV90& SIFT400&
SURF400)

68.56% 70.33% 82.34% 83.01% -

AdaBoost(CIELAB384)+
AdaBoost(HSV90)+
SVM(SIFT400)+
SVM(SURF400)

54.58% 57.33% 83.09% 83.57% -

Nilsback and
Zisserman 2008 72.80%

HOG, HSV,
SIFT, SVM

Nilsback 2009 76.30%
CLAY, HLAY, HOG,

HSV, SIFT, SVM

Ito and Kubota
2010 74.80%

CoHED, CoHD,
Color-CoHOG,

Color histogram,
LIBLINEAR

Cha et al. 2011 80.00%
BiCoS-MT, Lab

color, SIFT, SVM
Angelova et al.

2013 80.66%
HOG, Liblinear

SVM, LLC

Yoo et al. 2015 91.28%
CNN, Fisher

kernel

Liu et al. 2016 84.02%
CNN,

Luminance map
Saliency map

Xia et al. 2017 94.00%
Tensorflow,
Inception-v3



as petals, calyxes or stamens. Then use shape or color to clas-
sify what the flower is. Second, we may adjust our ensemble
model by replacing the voting method. We may try the be-
havior knowledge space (BKS) to classify the flowers. Third,
we may put the extracted features of flowers into the neural
network for classification, instead of the whole flower image.

REFERENCES

[1] Raphael Gonzalez and Richard E. Woods, Digital Image
Processing, Prentice Hall Press, 2002.

[2] Mark D Fairchild, Color Appearance Models, Addison-
Wesley, Boston, USA, 2005.

[3] C Connolly and T. Fleiss, “A study of efficiency and
accuracy in the transformation from RGB to CIELAB
color space,” IEEE Transactions on Image Processing,
vol. 6, no. 7, pp. 1046–1048, July 1997.

[4] David G. Lowe, “Object recognition from local scale-
invariant features,” in Proceedings of the 7th IEEE In-
ternational Conference on Computer Vision, Kcrkyra,
Greece, 1999, vol. 2, pp. 1150–1157.

[5] David G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International Journal of Computer
Vision, vol. 60, pp. 91–110, 2004.

[6] Herbert Bay, Andreas Ess, and Tinne Tuytelaars,
“SURF: Speeded up robust features,” Computer Vision
and Image Understanding, vol. 110, pp. 346–359, 2008.

[7] D. Agnew, “Efficient use of the Hessian matrix for cir-
cuit optimization,” IEEE Transactions on Circuits and
Systems, vol. 25, pp. 600–608, 1978.

[8] Maria Elena Nilsback and Andrew Zisser-
man, “102 category flower dataset,” 2008,
http://www.robots.ox.ac.uk/ vgg/data/flowers/102/.

[9] Maria Elena Nilsback and Andrew Zisserman, “Au-
tomated flower classification over a large number of
classes,” in Proceedings of the 6th Indian Conference
on Computer Vision, Graphics and Image Processing,
Bhubaneswar, India, 2008, pp. 722–729.

[10] Navneet Dalal and Bill Triggs, “Histograms of oriented
gradients for human detection,” in Proceedings of the
2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Washington, DC, USA,
2005, vol. 1 of CVPR ’05, pp. 886–893, IEEE Computer
Society.

[11] Corinna Cortes and Vladimir Vapnik, “Support-vector
networks,” Machine Learning, vol. 20, no. 3, pp. 273–
297, Sept. 1995.

[12] Chih Chung Chang and Chih Jen Lin, “LIBSVM: A
library for support vector machines,” ACM Transactions
on Intelligent Systems and Technology, vol. 2, no. 3, pp.
27:1–27:27, 2011.

[13] Maria Elena Nilsback, An Automatic Visual Flora: Seg-
mentation and Classification of Flower Images, Ph.D.
thesis, University of Oxford, Oxford, England, UK,
2009.

[14] Satoshi Ito and Susumu Kubota, “Object classification
using heterogeneous co-occurrence features,” in Pro-
ceedings of the 11th European Conference on Computer
Vision: Part II, Berlin, Heidelberg, 2010, ECCV’10, pp.
209–222, Springer-Verlag.

[15] Rong En Fan, Kai Wei Chang, Cho Jui Hsieh, Xiang Rui
Wang, and Chih Jen Lin, “LIBLINEAR: A library for
large linear classification,” The Journal of Machine
Learning Research, vol. 9, pp. 1871–1874, June 2008.

[16] Yuning Chai, V. Lempitsky, and A. Zisserman, “Bi-
CoS: A bi-level co-segmentation method for image clas-
sification,” in Proceedings of 2011 IEEE International
Conference on Computer Vision, Barcelona, Spain, Nov.
2011, pp. 2579–2586.

[17] Carsten Rother, Vladimir Kolmogorov, and Andrew
Blake, “Grabcut - interactive foreground extraction us-
ing iterated graph cuts,” in Proceedings of ACM SIG-
GRAPH 2004, Los Angeles, California, USA, Aug.
2004, vol. 23, pp. 309–314.

[18] Yuri Boykov, Olga Veksler, and Ramin Zabih, “Fast ap-
proximate energy minimization via graph cuts,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

[19] Yuri Boykov and Garet Funka-Lea, “Graph cuts and ef-
ficient N-D image segmentation,” International Journal
of Computer Vision, vol. 70, no. 2, pp. 109–131, Nov.
2006.

[20] Anelia Angelova, Shenghuo Zhu, and Yuanqing Lin,
“Image segmentation for large-scale subcategory flower
recognition,” in Proceedings of 2013 IEEE Workshop
on Applications of Computer Vision, Tampa, FL, USA,
2013, pp. 39–45.

[21] D. Yoo, S. Park, J. Y. Lee, and In So Kweon, “Multi-
scale pyramid pooling for deep convolutional represen-
tation,” in Proceedings of 2015 IEEE Conference on
Computer Vision and Pattern Recognition Workshops,
Boston, MA, USA, June 2015, pp. 71–80.

[22] Y. Liu, F. Tang, D. Zhou, Y. Meng, and W. Dong,
“Flower classification via convolutional neural net-
work,” in Proceedings of 2016 IEEE International Con-



ference on Functional-Structural Plant Growth Model-
ing, Simulation, Visualization and Applications, Qing-
dao, China, Nov. 2016, pp. 110–116.

[23] Xiaoling Xia, Cui Xu, and Bing Nan, “Inception-v3 for
flower classification,” in Proceedings of 2017 2nd IEEE
International Conference on Image, Vision and Comput-
ing, Chengdu, China, 2017, pp. 783–787.

[24] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna, “Rethinking
the inception architecture for computer vision,” in Pro-
ceedings of 2016 IEEE Conference on Computer Vision
and Pattern Recognition, Seattle, WA, USA, 2016, pp.
2818–2826.

[25] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Gregory S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Józefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Gordon Mur-
ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda B.
Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng,
“Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems,” in Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation, Savannah, GA, USA, 2016, pp. 265–
283, USENIX Association.

[26] Itseez, “Open source computer vision library,” 2015,
https://github.com/itseez/opencv.

[27] Ming Kuei Hu, “Visual pattern recognition by moment
invariants, computer methods in image analysis,” IRE
Transactions on Information Theory, vol. 8, 1962.

[28] Yoav Freund and Robert E. Schapire, “Experiments
with a new boosting algorithm,” in Proceedings of
13th International Conference on Machine Learning,
San Francisco, USA, 1996, pp. 148–156, Morgan Kauf-
mann.

[29] Yoav Freund and Robert E Schapire, “A decision-
theoretic generalization of on-line learning and an ap-
plication to boosting,” Journal of Computer and System
Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[30] Robert E. Schapire, “A brief introduction to boosting,”
in Proceedings of the 16th International Joint Confer-
ence on Artificial Intelligence, San Francisco, CA, USA,
1999, vol. 2 of IJCAI’99, pp. 1401–1406, Morgan Kauf-
mann Publishers Inc.

[31] Robert E. Schapire, Explaining AdaBoost, pp. 37–52,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[32] Paul E. Utgoff, “Incremental induction of decision
trees,” Machine Learning, vol. 4, no. 2, pp. 161–186,
Nov. 1989.

[33] Tin Kam Ho, “Random decision forests,” in Proceed-
ings of the 3rd International Conference on Document
Analysis and Recognition, Washington, DC, USA, 1995,
vol. 1 of ICDAR ’95, pp. 278–282, IEEE Computer So-
ciety.

[34] Leo Breiman, “Random forests,” Machine Learning,
vol. 45, no. 1, pp. 5–32, Oct. 2001.

[35] M. Kearns, “Thoughts on hypothesis boosting,” Ma-
chine Learning class project, Dec. 1988.


