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Abstract- The longest common subsequence (LCS)
algorithm is a useful method for measuring the
identities and for finding similar subsequences in
several sequences. Unfortunately, the longest
common subsequence problem is NP-hard. In the
past years, some algorithms, with several different
approaches, have been proposed for finding the LCS
of two given sequences. The complexity of these
algorithms is about O(n2) in general and worst cases,
where n is the length of sequences. When the given
sequences are very long, these algorithms will take
very long time and thus will become impractical. To
overcome the disadvantage of time consuming, some
efforts are devoted to the development of heuristic
and approximate algorithms for finding the LCS.
Such algorithms provide feasible solutions in
practical application, such as searching in databases.
However, there are few efforts for finding the LCS of
more than two sequences. In this paper, we propose
two approximate algorithms for finding the LCS of
multiple sequences. The time complexity of our
algorithms are O(kn) and O(2kn + 3n), where 
is the size of symbol set, k and n are the number and
length of input sequences, respectively. In the
experimental results, our algorithm finds the
common subsequences whose lengths are about
0.8|LCS| in average for two random sequences with
uniform distribution. In the rank-identity
experimental result, it shows that our methods are
suitable in practical application.
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1. Introduction

For a sequence s, over a finite symbol set , a
subsequence of s is the sequence t that can be
obtained from s by deleting zero or more (not
necessarily contiguous) symbols. The longest
common subsequence (LCS) problem of multiple
sequences, or multiple sequences longest common

subsequence (k-LCS) problem, where k is the number
of input sequences, is defined as follows: Given k (k
2) sequences, we want to find the longest sequence
t such that t is the common subsequence of the k
sequences. That is, given a k-sequence set S = {s1,
s2, …, sk}, sequence t is the common subsequence of
S if t can be obtained from removing zero or more
symbols from each sequences in S. In addition, if t is
the longest one of all possible common subsequences
of S, t is called the longest common subsequence. If
the sequences are in biological domain, the symbol
set is fixed, such as = {a, g, c, t} in DNA
sequences, = {a, g, c, u} in RNA sequences and 
contains the twenty types of amino acids in protein
sequences.

The LCS problem is a famous classical problem in
computer science and molecular biology, and it has
been studied extensively over more than 30 years.
We can regard the common subsequence as the
identical part of sequences. According to the LCS,
we can reconstruct the relative alignment. In the past
years, some algorithms have been proposed for
finding the LCS of two sequences based on three
major approaches, dynamic programming, contour,
and diagonal approaches [2, 7, 13, 14, 16]. The
complexity of most algorithms is O(n2) in general
and worst case, where n is the length of sequences.
Until now, the lowest time complexity is O(n2/log n)
for 2-LCS, which is proposed by Masek and Paterson
and based on the “Four Russians”trick [12]. If the
given sequences are very long, these algorithms will
take very long time and become impractical [1].

Most previous researches focused on the
relationship of two sequences, because 2-LCS is in
the P (polynomial) class. However, the relationship
between multiple sequences is also important. The
previous results on the k-LCS are very few, because
the problem is NP-hard even on binary alphabets
[11]. If the dynamic programming strategy is applied,
it needs O(nk) time and space to solve the problem,
where k is the number of given sequences and n is the
length of the longest sequence. When the number of
input sequences grows, it is not practical to use



dynamic programming to find the optimal k-LCS.
Therefore, we have to design new approaches to
solve the problem for feasibility.

For solving k-LCS problem in multiple sequences,
Hakata and Imai [6] proposed an algorithm with time
complexity O(nk+Dk(logk–3n+logk–2)), where D
is the number of dominant matches (contours).
Irving and Fraser [8] also proposed two algorithms
for k-LCS. One requires O(kn(n–l)k-1) time, where l
is the length of the LCS. The other requires O(kl(n–
l)k-1 + kn) time, where l is the length of the LCS,
and is the alphabet size. If the number of given
sequences is large, these algorithms may be
infeasible for solving the problem. One feasible
approach is to find some common subsequences that
are near to LCS. One simple approximate algorithm
to find the common subsequence is the long-run
algorithm [9]. It computes the minimum number of
occurrence for each symbol in all sequences, and
returns the maximum value of occurrence among all
symbols. The simple long-rum algorithm is fast and
can report a solution with approximate ratio ||. But
the algorithm returns the common subsequence
consisting of only single symbol. It seems useless in
most practical applications.

Elloumi [4] proposed a heuristic algorithm with
time complexity O(k2 n2 log n). His method is to find
the same regions in input sequences, and then
assemble these regions as a CS (common sequence).
In the data of real sequences with high similarity,
Elloumi’s algorithm could obtain good results.  But it 
obtains bad result when the sequences are random or
in different family and the number of sequences is
large. In addition, it is not an approximate algorithm.

Bonizzoni et al. [3] developed an approximate
algorithm for k-LCS called Expansion Algorithm
(EA). Their algorithm first compresses sequences to
streams by the same concept of run length encoding
(RLE), then progressively find a common sequence t
of all streams by the bottom-up tree merging
technique. Finally, expand all alphabets and all the
substrings (contiguous subsequence) of common
sequence t to find the longest common subsequence
for each sequence in S. The time required for the
algorithm is O(k n3 log n), where k is the number of
sequence and n is the length of sequences. The
algorithm does not always return real LCS, and the
sequences cannot always be compressed in real data.
To improve the expansion algorithm, Tsai and Hsu
proposed a minimum-spanning-tree-based greedy
(MSTG) algorithm [15] for replacing the original
bottom-up tree merging technique. The performance
of EA algorithm is related to the common stream of
all sequences.

In this paper, we propose new approximate
algorithms for finding the LCS of multiple sequences.
The time complexities of our algorithms are O(kn)
and O(2kn + 3n), respectively, where is the size

of symbol set, k and n are the number and the length
of input sequences, respectively. In the experimental
results, our algorithms find the common
subsequences whose lengths are about 0.8|LCS| in
average for two random DNA sequences. In the
rank-identity experimental result, it shows that our
methods are suitable in practical application.

This paper is organized as follows. In Section 2,
we review the long run algorithm, the expansion
algorithm, and the best next algorithm. Our
algorithms and the time complexity analyses are
described in Section 3. For illustrating the
performance of our algorithm, we give the
experimental results for several cases in Section 4.
Finally, Section 5 concludes this paper.

2. Related Works

2.1 The long run algorithm
The long run algorithm is proposed by Jiang and

Li [9], it is a simple and fast approximate algorithm.
Suppose sequence t is the approximate LCS of input
k-sequence in S = {s1, s2,…, sk} on the finite symbol
set = {1, 2, …, ||}. Let f(s, g) denote the total
number of symbol g in sequence s. The long run
algorithm is as follows.

t = max1j||{min1i|S|{f(si, gj)}}
The time complexity of the long run algorithm is

O(kn), where n and k are the length and the number
of input sequences, respectively. The long run
algorithm is a ||-approximate algorithm. It is fast
and simple to be embedded in other algorithms. So
one may say that every heuristic k-LCS algorithm is
||-approximate if its time complexity is not less than
O(kn) by embedding the long run algorithm.

2.2 The expansion algorithm
The expansion algorithm is proposed by

Bonizzoni et al. [3]. The main spirit of this
algorithm is to compress all sequences to streams
first, where a stream is the sequence without
consecutive identical alphabets. Then find all short
common streams, whose length is not more than 2,
and a longest common stream z of all sequences in S.
Then one can expand all substrings of stream z and
all short common streams to find a common
subsequence of S with maximal length, but it may not
be the real LCS of S. The long run algorithm is also
embedded in the expansion algorithm by finding all
short common streams and expanding them.

The time complexity of the expansion algorithm is
O(kn3log n), where k and n are the size and length of
input sequences in S, respectively. In general cases,
the performance of the expansion algorithm is related
to the efficiency for finding the longest common
stream. The result of the expansion algorithm is
surely better than the long run algorithm, and it is a
||-approximate algorithm. However, the expansion



algorithm is still impractical when n is large. To
improve the performance for finding the common
stream in the expansion algorithm, Tsai and Hsu
proposed an algorithm using minimum-spanning-
tree-based greedy algorithm (MSTG) [15] to find a
better common stream.

2.3 The best next algorithm
The best next heuristic algorithm is a typical

example of fast 2-LCS heuristic algorithm [5, 10],
and it can be easily extended to become a k-LCS
heuristic. Its complexity is O(kn), where is the
size of alphabets , k and n are the number and
length in S, respectively. Let p(s, t+g) denote the
minimal sequence containing subsequence (t+g), the
common subsequence t adding symbol g, in sequence
s. The best next algorithm is to select a symbol g
appending to the common sequence t in each round,
where symbol g maximizes min1i|S|{|si|–p(si, t+g)},
that is, the length of the shortest suffix (leaving)
sequences is maximal.

Though the best next algorithm may perform well
in experiments, it is not a ||-approximation
algorithm. One can find a counter example easily.
Given three sequences s1 = aaaaaagcccccc, s2 =
ccccccgaaaaaa, and s3 = acgacacacgacca
whose lengths are 13, 13, and 14, respectively. The
best next heuristic algorithm will lead the result that
the common subsequence is g with length 1, but the
LCS is aaaaaa or gggggg with length 6. Based
on the counter example, we can conclude that the
best next algorithm is not c-approximate for any
constant c in general. However, the best next
heuristic algorithm points out a wrinkle that the
problem can be pruned as a small one.

3. Our Algorithms

It is a special case that the symbol set is fixed in
the biological sequences. The property helps us to
develop ||-approximate algorithms. We can
combine the long-run algorithm and the pruned
wrinkle in the best next heuristic algorithm. Our
algorithms are given as follows.

Algorithm 1: ELR (Enhanced Long Run)
Input: k sequences S = {s1, s2, …, sk} on a finite

alphabet set .
Output: A common subsequence t of S.
Step 1: Preprocess all sequences in S and find the
long run alphabet g.
Step 2: Append alphabet g to common subsequence t.
Step 3: For each sequence si in S, prune the prefix

sequence pi with the minimal length, such that
t is the subsequence of the pruned sequence pi.

Step 4: Find the long run alphabet h of sequences
(si–pi) for each i, if there are several long run
alphabets and g is one of them, h = g;

otherwise, randomly select a long run
alphabet as h.

Step 5: If h is not empty (null), append the alphabet
h to common subsequence t, GOTO Step 3;
otherwise, GOTO Step 6.

Step 6: Output sequence t.

Theorem 1. The time complexity of Algorithm ELR
is O(kn), where = ||, k = |S|, and n is the length of
the longest sequence in S, respectively.
Proof. Step 1 executes the long run algorithm, and it
requires O(kn). The time complexity of Step 2 is
O(1). Step 3 requires O(k) using a programming
trick by preprocessing in Step 1. Step 4 requires
O(k) using the programming trick as the
preprocessing in Step 1, we need not perform the
long run algorithm again. Step 5 will call Step 3 and
Step 4 at most O(n) times. It means that the time
complexity of Step 3, Step 4 and Step 5 is O(kn).
Step 6 requires O(1) for output the result. So, the
time complexity of this algorithm is O(k n). 

Theorem 2. Algorithm ELR is ||-approximate.
Proof. Because Algorithm ELR prunes the problem
as smaller one in each round and finds the common
subsequence recursively. After pruning the prefix
sequences, there may be better long run symbol than
the original one. It is easily to show that the length
of common subsequence obtained from Algorithm
ELR is better than the long run algorithm, so it is also
||-approximate since the long run algorithm is ||-
approximate. 

One can examine that the solution obtained by
Algorithm ELR may not be optimal for the k-LCS
problem by the following counter example. Given
three sequences s1 = agctt, s2 = tagact and s3 =
cagtct whose lengths are 5, 6 and 6, respectively.
Algorithm ELR will lead the result that the common
subsequence is tt with length 2, but the LCS is
agct with length 4.

For getting better common subsequence, one can
examine the above example again. In the example,
we have two observations. First, the best next
heuristic algorithm is performing well to get the LCS
exactly. Second, all three sequences are ended by
alphabet t. By the optimality principle, after pruned
the last alphabet, the LCS of pruned sequences can
be found and it is a part of the original LCS. That is,
if we pruned the last alphabet t, the three sequences
will become s1 = agct, s2 = tagac and s3 =
cagtc whose lengths are 4, 5 and 5, respectively.
The LCS of s1, s2 and s3 is agc, which are the first
three alphabets of LCS = agct. By the two
observations, there may be an approximate algorithm
whose performance is near to the best next heuristic
algorithm.



Before presenting our next algorithm, we need to
define some notations which will be used later. Let
the vector of maximal available symbols denote as
vs(g, h), which is the number of symbol h prior to
(containing g) the last selected symbol g in sequence
s, where g, h . The vector of maximal available
symbols in S is denoted as v(g, h) = minsS{vs(g, h)}.
Let t denote the suffix common subsequence, the
calculation S –t represents that for each sequence si

in S, the suffix sequence pi with minimal length is
pruned away, where t is the common subsequence of
the pruned sequence pi, where 1 i k. Let d(g)
represent the degree of symbol g, which means the
largest times of v(g, j) will be recursively covered by
v(i, j) for symbol i g. According to degree d(g),
we define the parent symbol p(g) to be the most
parent symbol such that d(g) is maximal.

For example, consider three sequences s1 =
agctt, s2 = tagact and s3 = cagtct. The vectors
of v(i, j) are v(a, j) = [1, 0, 0, 0], v(g, j) = [1, 1, 0, 0],
v(c, j) = [1, 1, 1, 0], v(t, j) = [1, 1, 1, 2], the degree
d(j) = [3, 2, 1, 0] and p(j) = [t, t, t, t], where j 
{a, g, c, t}. After pruning symbol t, we have s1 =
agct, s2 = tagac and s3 = cagtc. The vectors
of v(i, j) are v(a, j) = [1, 0, 0, 0], v(g, j) = [1, 1, 0, 0],
v(c, j) = [1, 1, 1, 0], v(t, j) = [0, 0, 0, 1], the degree
d(j) = [2, 1, 0, 0] and p(j) = [c, c, c, t], where j 
{a, g, c, t}. Our next algorithm can help us to find
a common subsequence as follows.

Algorithm 2: BNMAS (Best Next for Maximal
Available Symbols)

Input: k sequences S = {s1, s2, …, sk} on a finite
alphabet set .

Output: A common subsequence t of S.
Step 1: Preprocess all sequences in S, the suffix

common subsequence t = null, and g is the
long run symbol.

Step 2: For each symbol, calculate v(i, j) and long
run symbol g in S–t, where i, j .

Step 3: Calculate the degree d(i) for each symbol i
between v(i, j) with topological relations.

Step 4: Find the symbol h with maximal (d(h) + max
j{v(h, j)}), if several alphabets have the
same maxi{d(i) + max j{v(i, j)}}, select
the symbol with the maximal degree as h, and
g is one of them, h = g; otherwise, randomly
select a alphabet with maxi{d(i) + max
j{v(i, j)}} as h.

Step 5: If h is not empty (null), append symbol p(h),
the parent symbol of h, to common
subsequence t, GOTO Step 2; otherwise,
GOTO Step 6.

Step 6: Output sequence t.

Theorem 3. The time complexity of Algorithm
BNMAS is O(2 k n + 3 n), where = ||, k = |S|,

and n is the length of the longest sequence in S,
respectively.
Proof. Step 1 executes the long run algorithm, it
requires O(kn). The time complexity of Step 2 is
O(2k), Step 3 requires O(3) and Step 4 requires
O(2) using programming tricks. In Step 3, we can
use the algorithm for finding the longest paths in
DAG (directed acyclic graph), it requires O(2)
because there is at most nodes. Step 5 calls Step 2,
Step 3 and Step 4 at most O(n) times. It means that
Step 2, Step 3, Step 4 and Step 5 requires O(2kn +
3n). Step 6 requires O(1) for output the result. So,
the time complexity of this algorithm is O(2kn +
3n). 

Theorem 4. Algorithm BNMAS is ||-approximate.
Proof. It is similar to Algorithm ELR, Algorithm
BNMAS prunes the problem as smaller one in each
round and finds the common subsequence recursively.
After pruning the prefix sequences, Step 4 ensures
that the better symbol than long run one can be found.
The reason is that we consider the combination of
degree d(i) and the cover relationship between v(i, j),
where i, j . So the length of common subsequence
obtained from Algorithm BNMAS is better than the
long run algorithm, so Algorithm BNMAS is also ||-
approximate. 

4. Experimental Results

In this section, we will show some experimental
results of our algorithms. We test algorithm in
binary and DNA sequences for the lengths 100, 300,
500, and 1000. For binary sequences, we compare
the results of our algorithm with the expansion
algorithm for four sequences. For DNA sequences,
we test our algorithm for 2, 4, 10, and 20 sequences.
The sequences are generated with randomly uniform
distribution. The ratios are the average of 100 sets
for each testing condition case.

In Table 1, we simulate Algorithm BNMAS in
one-way and duplex direction. The one-way
direction means that our algorithm only finds the
common subsequence from tail to head, and duplex
direction returns the longer one of the common
subsequences of both sides from head to tail and
from tail to head. The duplex direction requires
twice time of the one-way one. The results of our
algorithm in one-way and duplex direction are both
better than the expansion algorithm for four random
sequences on binary alphabets. The time complexity
of the expansion algorithm is larger than ours. We
conclude that our algorithm is more practical than the
expansion algorithm.

It is well known that finding k-LCS is hard. For
the experimental result of multiple sequences, we
design a method to generate multiple sequences with
their LCS as follows. Generate two random



sequences s1 and s2 with uniform distribution and
find the LCS t of s1 and s2. Inserting random symbols
into LCS t until to the expected length can generate
other sequences in the sequence set.

In Table 2, we show the performance ratio of
Algorithm BNMAS with duplex direction on DNA
sequences with different number and length. In this
table, one can see that the ratios of our algorithm are
about from 0.885 to 0.823 in average when sequence
lengths are from 100 to 1000. It means that out
algorithm can get a good common subsequence
whose length is about 0.8 |LCS| when the sequence
length is less than 1000. Besides, our algorithm is
stable for two sequences. Because our algorithm is
fast, one can use our algorithm to select possible
sequences that have high identity to the query
sequences in database searching.

Table 1. The performance ratios of the expansion
algorithm and Algorithm BNMAS for four random
sequences on binary alphabets. Ratio = |CS|/|LCS|.

Our AlgorithmSeq Length Expansion
One-way Duplex

100 0.746 0.803 0.820
300 0.697 0.726 0.742
500 0.681 0.711 0.720

1000 0.674 0.690 0.696

Table 2. The performance ratio of Algorithm
BNMAS on DNA sequences. Ratio = |CS|/|LCS|. The
numbers of sequences are 2, 4, 10, and 20,
respectively.

Len
#(seq) 2 4 10 20

100 0.886 0.774 0.763 0.814
300 0.848 0.665 0.602 0.579
500 0.835 0.636 0.550 0.529

1000 0.823 0.602 0.507 0.480

Figure 1 is the rank-identity graph of two DNA
sequences with different identities. Here, we fix a
sequence s and generate other 200 sequences {s1,
s2, …, s200} by mutating s randomly to obtain 200
sequence pairs with various identities. We draw the
rank-identity graph for each pair (s, si), where 1 i 
200. Figure 1 approves that one can use our
algorithm as a selector to select possible candidates
in database searching. For example, we can set 0.9 
length as a threshold to select candidate sequences.
Then one can use the precise LCS algorithms to find
the best one in the candidate sequences. The
approach can fast find the near sequences with high
probability.
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Figure 1. The rank-identity graph of two DNA
sequences with different identities. The top line is of
the LCS. The middle and bottom lines are the lengths
of common subsequence found by our algorithm in
one-way and duplex directions respectively. The
length of input sequences is 300.

5. Conclusion

In this paper, we propose two approximate
algorithms for finding the longest common
subsequence of multiple sequences. The time
complexities of our algorithms are O(k n) and O(2

k n + 3 n) respectively, where  is the size of
symbol set, k and n are the number and length of
input sequences. The first algorithm improves the
long run algorithm but its time complexity is -
multiple more than the long run algorithm. Note that
symbol set  is finite and fixed, and = || is a
constant in biological sequences.

In the experimental results, our algorithm
performs well and stable for two sequences on DNA
sequences. Our algorithm is fast, and it can be used
to select possible candidate sequences that have high
identity to the query sequences in database searching.
Compared with the expansion algorithm, our
algorithm is more practical. In the future, we will
analyze the real data and study the cutting approach
to improve and refine our algorithm, especially for
input sequences with larger size, in either number or
length.
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