
Finding Winner Alignments with Multiple Scoring Matrices ∗

Kuo-Tsung Tseng, Chang-Biau Yang, Yung-Hsing Peng and Chiou-Ting Tseng
Department of Computer Science and Engineering

National Sun Yat-sen University, Kaohsiung, Taiwan

Abstract

How to align two given sequences properly is a fun-
damental problem in bioinformatics. In the sequence
alignment problem, the most essential thing that di-
rectly affects the resulting alignment is the scoring
matrix. There are a variety of scoring matrices used
for alignment, and each of them has its own purpose
in biosequence alignment. It seems unlikely that an
alignment is optimal for each scoring matrix. But,
there may be one that meets the most matrices with
acceptable scores.

In this paper, we present an efficient algorithm for
finding the winner alignment when multiple scoring
matrices are applied. We then discuss the variants of
the comparing function. By simply reordering the steps
in the comparing function, we could obtain another
winner alignment under different criterion. Our algo-
rithm solves the problem in O(kmn) time where k is the
number of scoring matrices involved, and m and n are
the lengths of the two input sequences. A more efficient
algorithm with O(k(|Σ|+ 1)2 + mn) time can find the
winner alignment under the summing scheme, where
|Σ| denotes the alphabet size of the input sequences.

1 Introduction

It is widely believed that in most cases, proteins
with similar structures have similar functions, and sim-
ilar biosequences share similar structures. In other
words, a protein without known function could be
understood if we could find a similar protein whose
function has been known already. The issue now
is the method of determining the similarity of two
given biosequences. Thus, for many years, the com-
parison of biosequences [1, 6–8, 12, 14] has drawn a
lot of attention. Actually, sequence comparison is
usually regarded as the sequence alignment problem,
which is a well studied problem in the algorithm area
[3,4,9,10,16].

∗Correspondence e-mail: cbyang@cse.nsysu.edu.tw (Chang-
Biau Yang).

The essential in the sequence alignment problem is
the scoring matrix. It is easy to find an optimal align-
ment if a proper measuring scheme is given. A variety
of scoring matrices [2, 5, 13] were proposed, but none
of them is completely successful. It seems that for
any kind of scoring matrices, there always exist some
biosequences with lower scores but higher similarities
(judged by biologists or experiments).

All the scoring matrices PAMs, Blosums and
Gonnets have their own purposes in biosequence align-
ment. It seems unlikely that they would share the same
optimal alignment. How far should we step backward
to have an acceptable common alignment in all scoring
matrices applied?

In 1994, Naor and Brutlag presented the idea of the
near optimal alignment and they showed that the align-
ment with optimal score is not always the most biolog-
ically meaningful one [11]. Their result implies that
an alignment of acceptable scores, i.e. near-optimal
alignment, in all scoring matrices is meaningful. Thus,
such an alignment should be focused further.

In this paper, a useful feature [15] of the alignment
lattice is proposed to calculate the losing score lattice.
With these losing score lattices of several scoring ma-
trices, it is not difficult to find thewinner alignment
whenk scoring matrices is applied. Conceptually, a
winner alignmentrefers to the best alignment (under
some user-specified mechanisms) which fits the most
scoring matrices . This idea is particularly useful when
we have no idea which scoring matrix is the most be-
lievable.

Our method proposed in this paper for finding the
winner alignment can be easily implemented. Its time
complexity isO(kmn) wherem, n are lengths of the
two input sequences, respectively andk is the num-
ber of scoring matrices that we applied. It can be re-
duced toO(mn) when the alphabet size of the input
sequences andk are much smaller thanm, n under the
summing scheme.

The rest of this paper is organized as follows. In
Section 2, we give the useful feature to calculate the
losing score lattice. Next, we will propose our method
for finding the winner alignment in Section 3. Then
in Section 4, we will give the analysis of comparing

Table 1: Three scoring matrices of{a,b,c,d}.

SM1 - a b c d
- −∞ -1 -1 -1 -1
a -1 4 1 0 2
b -1 1 3 0 -2
c -1 0 0 2 1
d -1 2 -2 1 1

SM2 - a b c d
- −∞ -1 -1 -1 -1
a -1 4 -2 0 2
b -1 -2 3 0 3
c -1 0 0 2 -2
d -1 2 3 -2 5

SM3 - a b c d
- −∞ -1 -1 -1 -1
a -1 1 2 0 2
b -1 2 1 0 1
c -1 0 0 1 3
d -1 2 1 3 1

function, and further propose an easier way to obtain
the winner alignment under the summing scheme. Fi-
nally, some discussions and conclusions will be given
in Section 5.

2 Preliminaries

In this section, we demonstrate how we calculate
the losing score lattice with a simple example. LetS
andT be the two input sequences, where|S| = m and
|T| = n. S= abdcd andT = bacddb are given to be
aligned with the scoring matrixSM1 shown in Table 1.
We then have the alignment latticeAL1 of sequences
S and T, as shown in Figure 1, after the traditional
alignment scheme is performed. [3,4,9,10,16].

The bold lines in Figure 1 represent the correct
alignments of getting optimal scores. The numbers be-
side lines are the costs of alignments. To obtain the
optimal alignment, one can trace from the lower right
corner back to the upper left corner inAL1 [9]. In our
example, there are two optimal alignmentsabdcd---bacddb
andabdc-d--bacddb .

It is easy to find the optimal alignment of two given
sequences, but to find the winner alignment we need
an efficient way to calculate the difference between the
optimal alignment and any other alignment. To do so, a
special lattice of the same size as the alignment lattice,

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−21112−2

011200

−21112−2

3−2 −2013

122041

−1 −1 −1 −1 −1 −1

−(0) b(1) a(2) c(3) d(4) d(5) b(6)

−(0)

a(1)

b(2)

d(3)

c(4)

d(5)

0 −1 −2 −3 −4 −5 −6

−1

−2

−3

−4

−5

1 3 2 1 0 −1

2 2 3 2 1 3

1 4 3 4 3 2

0 3 6 5 5 4

−1 2 5 7 6 5

Figure 1: The alignment latticeAL1 of sequences
abdcd andbacddb with the scoring matrixSM1 shown
in Table 1.

theLosing Score Lattice, is used in our method.
For an alignment lattice computed withSandT, let

P = (i, j,U) denote the operation which alignsSi and
Tj via directionU , where 0≤ i ≤ m, 0≤ j ≤ n, and
U ∈ {h,d,v}. Hereh, d andv represent thehorizontal,
diagonal, andvertical directions, respectively. In ad-
dition, we define theδ function to calculate the effect
when the operationP, with respect to the scoring ma-
trix SMand alignment latticeAL, is chosen as follows.

δ(P) = AL(i, j)+

−AL(i, j−1)−SM(−,Tj) if U = h,

−AL(i−1, j−1)−SM(Si,Tj) if U = d,

−AL(i−1, j)−SM(Si,−) if U = v,
whereSi andTj represent theith and jth characters of

SandT, respectively.

Traditionally, AL(i, j) is undefined wheni < 0 or
j < 0, so thatδ(P) = ∞ if an undefined value is en-
countered. We use some examples to illustrate the us-
age ofδ(P). Take Figure 1 for example,P = (5,6,v)
yields a nonoptimal alignment. Clearly, in this case
we haveδ(P) = δ(5,6,v) = AL(5,6)+AL(5−1,6)−
SM(d,−) = 5− 4− (−1) = 2. SupposeP is cho-
sen and afterward we follow the correct alignments,
i.e. bold lines, from position (4, 6) till position (0,
0). Then, the score of the obtained nonoptimal align-
ment would beoptimal score− δ(P) = 5−2 = 3. As
another example, we first follow the bold lines from
position (5, 6) till position (4, 4), thenP = (4,4,d)
is chosen together with bold lines from position (3,
3) till position (0, 0). In this case, we haveδ(P) =
δ(4,4,d) = AL(4,4)+ AL(4− 1,4− 1)−SM(c,d) =

5−3−1= 1. This operation yields an alignment with
score 5− δ(P) = 5− 1 = 4. Similarly, it can be eas-
ily verified thatδ(4,4,h) = 0 andδ(4,4,v) = 2, which
result in the alignment score 5−0 = 5 and 5−2 = 3,
respectively.

It is easy to prove that an optimal alignment can
be constructed if and only if each operationP in this
alignment satisfiesδ(P) = 0. Note that the losing score
δ(P) is accumulative. This means if a series of op-
erationsP̂ = P1P2 · · ·Pt are chosen, then the differ-
ence between the optimal alignment andP̂ would be
∑t

s=1 δ(Ps).
Hence, the losing score lattice can be constructed

by considering eachδ(P) in AL. It is clear that the time
complexity for constructing the losing score lattice is
O(3mn) = O(mn), which turns out to beO(kmn) if k
scoring matrices are applied. In this paper, 3 scoring
matrices listed in Table 1 are used and Table 2 shows
their losing score lattices (LSLs).

3 Finding the Winner Alignment

We propose an algorithm for finding the win-
ner alignment in this section. Here we adopt a
Voting Lattice(VL) of size (m+ 1)× (n+ 1). Each
element at position(i, j) in VL is ak-dimensional vec-
tor that records the minimum losing scores of thek
scoring matrices, which is obtained by tracing inLSL
from position(m,n) back to position(i, j).

Algorithm: Finding the Winner Alignment (FWA)

Input: Losing score latticesLSLz, where 1≤ z≤ k.

Output: The winner alignment which fits the most
scoring matrices.

Step 0:(Initialization) VL(m,n) =

∣

∣

∣

∣

∣

∣

0
0
0

∣

∣

∣

∣

∣

∣

.

Step 1: In VL, it is clear that the value at position
(m, j), 0≤ j ≤ n−1, can be obtained only from
the horizontal direction and the value at position
(i,n), 0≤ i ≤ m−1, can be obtained only from
the vertical direction. Sinceδ(P) is accumulative,
we have the following formula.

VL(m, j)=V L(m, j +1)+

∣

∣

∣

∣

∣

∣

∣

δ1(m, j +1,h)
...

δk(m, j +1,h)

∣

∣

∣

∣

∣

∣

∣

,

where 0≤ j ≤ n−1.

VL(i,n)=VL(i +1,n)+

∣

∣

∣

∣

∣

∣

∣

δ1(i +1,n,v)
...

δk(i +1,n,v)

∣

∣

∣

∣

∣

∣

∣

,

where 0≤ i ≤m−1.

For example,

VL(5,2)=VL(5,2+1)+

∣

∣

∣

∣

∣

∣

δ1(5,2+1,h)
δ2(5,2+1,h)
δ3(5,2+1,h)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

3
10
8

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

4
4
5

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

7
14
13

∣

∣

∣

∣

∣

∣

.

VL(2,6)=VL(2+1,6)+

∣

∣

∣

∣

∣

∣

δ1(2+1,6,v)
δ2(2+1,6,v)
δ3(2+1,6,v)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

5
5
8

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

0
7
5

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

5
12
13

∣

∣

∣

∣

∣

∣

.

Step 2: VL(i, j) =

min

VL(i, j +1) +

∣

∣

∣

∣

∣

∣

∣

δ1(i, j +1,h)
...

δk(i, j +1,h)

∣

∣

∣

∣

∣

∣

∣

,

VL(i +1, j +1) +

∣

∣

∣

∣

∣

∣

∣

δ1(i +1, j +1,d)
...

δk(i +1, j +1,d)

∣

∣

∣

∣

∣

∣

∣

,

VL(i +1, j) +

∣

∣

∣

∣

∣

∣

∣

δ1(i +1, j,v)
...

δk(i +1, j,v)

∣

∣

∣

∣

∣

∣

∣

,

where 0≤ i ≤m−1, 0≤ j ≤ n−1.

To pick the smallest vector, the comparing func-

tion (≺) for a pair of vectorsX =

∣

∣

∣

∣

∣

∣

∣

x1
...

xk

∣

∣

∣

∣

∣

∣

∣

and

Y =

∣

∣

∣

∣

∣

∣

∣

y1
...

yk

∣

∣

∣

∣

∣

∣

∣

is defined as follows, where the com-

paring function proceeds untilmin(X,Y) is deter-
mined.

I.Voting Mechanism: If xi < yi , where 1≤ i≤ k,
in most ofi’s, thenmin(X,Y) = X, denoted
as X ≺ Y. If min(X,Y) cannot be deter-
mined, go to II.

II.Summing Model: X ≺Y if ∑k
i=1xi < ∑k

i=1yi .
If min(X,Y) cannot be determined, go to III.

III.Minimax Decision: X ≺ Y if max1≤i≤k xi <

max1≤i≤k yi . If min(X,Y) cannot be deter-
mined, go to IV.

Table 2: The losing score latticeLSLz of sequencesabdcd andbacddb with the scoring matrixSMz shown in Table
1, where 1≤ z≤ 3. Numbers in() represent theδz(i, j,h), δz(i, j,d)and δz(i, j,v) of SMz at position(i, j).

LSL1 -(0) b(1) a(2) c(3) d(4) d(5) b(6)
-(0) 0(∞,∞,∞) -1(0,∞,∞) -2(0,∞,∞) -3(0,∞,∞) -4(0,∞,∞) -5(0,∞,∞) -6(0,∞,∞)
a(1) -1(∞,∞,0) 1(3,0,3) 3(3,0,6) 2(0,4,6) 1(0,2,6) 0(0,2,6) -1(0,3,6)
b(2) -2(∞,∞,0) 2(5,0,2) 2(1,0,0) 3(2,0,2) 2(0,2,2) 1(0,2,2) 3(3,0,5)
d(3) -3(∞,∞,0) 1(5,5,0) 4(4,0,3) 3(0,0,1) 4(2,0,3) 3(0,0,3) 2(0,3,0)
c(4) -4(∞,∞,0) 0(5,3,0) 3(4,2,0) 6(4,0,4) 5(0,1,2) 5(1,0,3) 4(0,1,3)
d(5) -5(∞,∞,0) -1(5,5,0) 2(4,0,0) 5(4,1,0) 7(3,0,3) 6(0,0,2) 5(0,2,2)

LSL2 -(0) b(1) a(2) c(3) d(4) d(5) b(6)
-(0) 0(∞,∞,∞) -1(0,∞,∞) -2(0,∞,∞) -3(0,∞,∞) -4(0,∞,∞) -5(0,∞,∞) -6(0,∞,∞)
a(1) -1(∞,∞,0) -2(0,0,0) 3(6,0,6) 2(0,4,6) 1(0,2,6) 0(0,2,6) -1(0,6,6)
b(2) -2(∞,∞,0) 2(5,0,5) 2(1,6,0) 3(2,0,2) 5(3,0,5) 4(0,0,5) 3(0,0,5)
d(3) -3(∞,∞,0) 1(5,0,0) 4(4,0,3) 3(0,3,1) 8(6,0,4) 10(3,0,7) 9(0,2,7)
c(4) -4(∞,∞,0) 0(5,3,0) 3(4,2,0) 6(4,0,4) 7(2,6,0) 9(3,3,0) 10(2,0,2)
d(5) -5(∞,∞,0) -1(5,0,0) 2(4,0,0) 5(4,4,0) 11(7,0,5) 12(2,0,4) 12(1,0,3)

LSL3 -(0) b(1) a(2) c(3) d(4) d(5) b(6)
-(0) 0(∞,∞,∞) -1(0,∞,∞) -2(0,∞,∞) -3(0,∞,∞) -4(0,∞,∞) -5(0,∞,∞) -6(0,∞,∞)
a(1) -1(∞,∞,0) 2(4,0,4) 1(0,1,4) 0(0,2,4) -1(0,0,4) -2(0,0,4) -3(0,0,4)
b(2) -2(∞,∞,0) 1(4,1,0) 4(4,0,4) 3(0,2,4) 2(0,1,4) 1(0,1,4) 0(0,1,4)
d(3) -3(∞,∞,0) 0(4,1,0) 3(4,0,0) 7(5,0,5) 6(0,2,5) 5(0,2,5) 4(0,2,5)
c(4) -4(∞,∞,0) -1(4,2,0) 2(4,2,0) 6(5,2,0) 10(5,0,5) 9(0,0,5) 8(0,3,5)
d(5) -5(∞,∞,0) -2(4,1,0) 1(4,0,0) 5(5,0,0) 9(5,2,0) 11(3,0,3) 10(0,0,3)

IV.Priority Judgment: X ≺Y if xi < yi andSMi

has higher priority than any otherSMj that
x j > y j . If min(X,Y) cannot be determined,
go to V.

V.: Randomly choose eitherX or Y.

Step 3: Trace back fromVL(0,0) to VL(m,n) to ob-
tain the winner alignment.

The proof for our FWA algorithm is omitted and left
to the full version of this paper. Here, we only demon-
strate FWA with an example. The constructedVL with
FWA is listed in Table 3. In Table 3, one can see that

VL(0,0) =

∣

∣

∣

∣

∣

∣

1
16
0

∣

∣

∣

∣

∣

∣

, which means that there exists at

least one alignment which is an optimal alignment for
SM3, with scoreoptimum−1 in SM1, and distance 16
from the optimum inSM2. In this example, the win-
ner alignment isabdcd-bacddb , and its alignment scores for
SM1,SM2,SM3 are 4, -4 and 10, respectively.

4 Variants of the Comparing Function

It is interseting that if we change the steps order
in our comparing function (most-fit scheme), we will
get another winner alignment with different criterion.
For example, to minimize the total losing scores in
all score matrices, one can simply raise the summing
model to the first step in the comparing function. As
another example, to find an alignment which must be
optimal forSM1, and get the maximum score inSM2,
thenSM3, then· · ·, and finallySMk, one can make the
priority judgment step be primary. Note that when the
priority judgment is primary, other comparing steps
will become redundant, since there is no way that the
priority judgment could possibly fail.

One thing should be noticed is that the first step of
the comparing function (≺) must be order preserving
to ensure the correctness of our method. That is,

∀ X, Y, Z∈

∣

∣

∣

∣

∣

∣

∣

v1
...

vk

∣

∣

∣

∣

∣

∣

∣

, wherev1, · · · ,vk ∈ {0}∪N ,

if X ≺Y, (X +Z)≺ (Y+Z).

In our comparing functions, voting mechanism,

Table 3: The voting latticeVL using the most-fit/summing scheme for sequencesabdcd andbacddb with theLSLs
shown in Table 2. The values of these two models in the voting lattice are almost the same except those cells with
tiny size fonts, which indicate the values for the summing scheme when they do not share the same value. The
winner alignment of the most-fit scheme is shown by the arrowswithout boxes . The boxed-arrows show the way
to win in the summing scheme.

VL -(0) b(1) a(2) c(3) d(4) d(5) b(6)

-(0)

∣

∣

∣

∣

∣

∣

1
16
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

2
3
5

∣

∣

∣

∣

∣

∣

∣

∣

∣

2
3
5

∣

∣

∣

∣

∣

∣

←

∣

∣

∣

∣

∣

∣

9
7
5

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

7
10
6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

11
14
10

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

11
18
18

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

16
23
21

∣

∣

∣

∣

∣

∣

a(1)

∣

∣

∣

∣

∣

∣

0
3
8

∣

∣

∣

∣

∣

∣

տ

∣

∣

∣

∣

∣

∣

1
16
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2
3
4

∣

∣

∣

∣

∣

∣

տ

∣

∣

∣

∣

∣

∣

5
3
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

5
8
6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

5
12
14

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

10
17
17

∣

∣

∣

∣

∣

∣

b(2)

∣

∣

∣

∣

∣

∣

5
8
11

∣

∣

∣

∣

∣

∣

∣

∣

∣

11
9
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

0
3
7

∣

∣

∣

∣

∣

∣

տ

∣

∣

∣

∣

∣

∣

1
10
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2
3
2

∣

∣

∣

∣

∣

∣

տ

∣

∣

∣

∣

∣

∣

3
3
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6
10
5

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

5
12
13

∣

∣

∣

∣

∣

∣

d(3)

∣

∣

∣

∣

∣

∣

11
14
6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6
9
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0
3
7

∣

∣

∣

∣

∣

∣

տ

∣

∣

∣

∣

∣

∣

1
7
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2
3
0

∣

∣

∣

∣

∣

∣

տ

∣

∣

∣

∣

∣

∣

3
3
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

5
5
8

∣

∣

∣

∣

∣

∣

c(4)

∣

∣

∣

∣

∣

∣

12
19
17

∣

∣

∣

∣

∣

∣

∣

∣

∣

13
16
18

∣

∣

∣

∣

∣

∣

∣

∣

∣

7
14
13

∣

∣

∣

∣

∣

∣

∣

∣

∣

8
11
14

∣

∣

∣

∣

∣

∣

∣

∣

∣

4
7
10

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0
3
5

∣

∣

∣

∣

∣

∣

տ

∣

∣

∣

∣

∣

∣

0
1
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2
0
0

∣

∣

∣

∣

∣

∣

տ

∣

∣

∣

∣

∣

∣

2
3
3

∣

∣

∣

∣

∣

∣

d(5)

∣

∣

∣

∣

∣

∣

16
23
21

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

11
18
17

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

7
14
13

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3
10
8

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0
3
3

∣

∣

∣

∣

∣

∣

տ

∣

∣

∣

∣

∣

∣

0
1
0

∣

∣

∣

∣

∣

∣

←

∣

∣

∣

∣

∣

∣

0
0
0

∣

∣

∣

∣

∣

∣

տ

summing model and priority judgment are order pre-
serving, but minimax decision is not. Consider the fol-
lowing example.

If X =

∣

∣

∣

∣

∣

∣

2
2
2

∣

∣

∣

∣

∣

∣

, Y =

∣

∣

∣

∣

∣

∣

1
3
1

∣

∣

∣

∣

∣

∣

andZ =

∣

∣

∣

∣

∣

∣

2
0
2

∣

∣

∣

∣

∣

∣

,

we havemax(X) = 2 < max(Y) = 3. ThusX ≺Y.

X′ = X +Z =

∣

∣

∣

∣

∣

∣

4
2
4

∣

∣

∣

∣

∣

∣

, Y′ = Y+Z =

∣

∣

∣

∣

∣

∣

3
3
3

∣

∣

∣

∣

∣

∣

.

max(X′) = 4 > max(Y′) = 3. ThusX′ ≻Y′.
Though the minimax decision cannot be the first

step of the comparing function, it has no problem to
be used in any of the following steps. Once the or-
der preserving property is ensured, each winner would
always conform to the rule of the first step.

For the special case that only the summing model
is applied, called thesumming scheme, we propose an
algorithm with O(k(|Σ|+ 1)2 + mn) time to find the
winner alignment, where|Σ| denotes the alphabet size
of the input sequences.

Lemma 1 Let SM′ = SM1+SM2+ · · ·+SMk, any op-
timal alignment for SM′ is a winner alignment for the
summing scheme.

Proof: SupposeR=
s1
1,s

1
2, · · · ,s

1
r

s2
1,s

2
2, · · · ,s

2
r
, whose length isr, is

an arbitrary alignment of two sequencesSandT. Let
Opti be the optimal score for aligningS andT with
SMi , and letMi be the alignment score ofR in SMi,
where 1≤ i ≤ k. We then haveMi = SMi(s1

1,s
2
1) +

SMi(s1
2,s

2
2)+ · · ·+SMi(s1

r ,s
2
r).

According to the summing scheme, the total losing
score ofR is ∑k

i=1(Opti−Mi). Therefore, the total los-
ing score for any winner alignment can be written as
minR(∑k

i=1(Opti−Mi))=∑k
i=1Opti−maxR(∑k

i=1Mi).
This implies that any winner alignment must have

its total alignment score,(∑k
i=1Mi), be maximized.

Manipulating the formula, we havemaxR(∑k
i=1Mi)

=maxR(∑k
i=1SMi(s1

1,s
2
1)+ ∑k

i=1SMi(s1
2,s

2
2)+ · · ·

+ ∑k
i=1SMi(s1

r ,s
2
r))

=maxR(SM′(s1
1,s

2
1)+SM′(s1

2,s
2
2)+ · · ·+SM′(s1

r ,s
2
r)).

Therefore, the optimal alignment for the scoring
matrixSM′ is the demanded winner alignment. 2

Here we give the new scoring matrixSM′ = SM1+
SM2 + SM3 of our previous example in Table 4, and
keep the losing scores in the latticeLSL′, as shown
in Table 5. In this example, one can see that the tra-
ditional alignment lattice suffices for determining the
winner alignment. One can take theLSL′ in Table 5 as

Table 4: A new scoring matrixSM′ of {a,b,c,d}.

SM′ - a b c d
- −∞ -1 -1 -1 -1
a -1 9 1 0 6
b -1 1 7 0 2
c -1 0 0 5 2
d -1 6 2 2 7

a contrast with either Table 2 or Table 3.
The VL under the summing scheme is listed in Ta-

ble 3, using tiny size fonts if the corresponding value is
different from that of the most-fit scheme. One can see

that VL(0,0) =

∣

∣

∣

∣

∣

∣

2
3
5

∣

∣

∣

∣

∣

∣

, which shows that there exists

at least one alignment which is with scoreopt1−2 in
SM1, opt2−3 in SM2, andopt3−5 in SM3. In our ex-
ample, the winner alignment is-abdcdbacddb , and its scores
in SM1, SM2 andSM3 are 3, 9 and 5, respectively.

5 Conclusion

In this paper, we present a simple algorithm to find
the winner alignment when multiple scoring matrices
are involved. For the most-fit scheme, the time com-
plexity of our algorithm isO(kmn), wherem and n
are the lengths of the two input sequences, andk is
the number of scoring matrices applied. For the sum-
ming scheme, we also show that the required time can
be reduced toO(k(|Σ|+ 1)2 + mn), which would be
O(mn) for the most cases. These two algorithms are
both time-efficient and code-efficient. In addition, by
changing the order of our comparing function steps,
one can obtain another result with different criterion,
which shows the flexibility of our scheme.

In the future, we will consider other meaningful
mechanisms which can be added into the comparing
function. It would be interesting to study their effects
on both time and space complexity.

References

[1] S. Altschul and B. W. Erickson, “Optimal se-
quence alignment using affine gap costs,”Jour-
nal of Molecular Biology, Vol. 48, pp. 603–616,
1986.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers,
and D. J. Lipman, “Basic local alignment search

tool,” Journal of Molecular Biology, Vol. 215,
pp. 403–410, 1990.

[3] A. Apostolico and C. Guerra, “The longest com-
mon subsequence problem revisited,”Algorith-
mica, No. 2, pp. 315–336, 1987.

[4] L. Bergroth, H. Hakonen, and T. Raita, “A survey
of longest common subsequence algorithms,”
Seventh International Symposium on String Pro-
cessing Information Retrieval, A Coruña, Spain,
pp. 39–48, 2000.

[5] M. O. Dayhoff., Atlas of Protein Sequence and
Structure. National Biomedical Research Foun-
dation, Washington, DC, 1978.

[6] D. F. Feng, M. S. Johnson, and R. F. Doolittle,
“Aligning amino acid sequences: comparison of
commonly used method s,”Journal of Molecular
Evolution, Vol. 21, pp. 112–125, 1985.

[7] O. Gotoh, “An improved algorithm for matching
biological sequences,”Journal of Molecular Bi-
ology, Vol. 162, pp. 705–708, 1982.

[8] O. Gotoh, “Optimal sequence alignment allow-
ing for long gaps,”Bulletin of Mathematical Bi-
ology, Vol. 52, pp. 359–373, 1990.

[9] D. S. Hirschberg, “Algorithms for the longest
common subsequence problem,”Journal of the
ACM, Vol. 24, No. 4, pp. 664–675, 1977.

[10] J. W. Hunt and T. G. Szymanski, “A fast al-
gorithm for computing longest common subse-
quences,”Communications of the ACM, Vol. 20,
No. 5, pp. 350–353, 1977.

[11] D. Naor and D. L. Brutlag, “On near-optimal
alignments of biological sequences,”Journal of
Computing Biology, Vol. 4, pp. 349–366, 1994.

[12] W. Pearson and W. Miller, “Dynamic program-
ming algorithms for biological sequence com-
parison,” Methods in Enzymology, Vol. 210,
pp. 575–601, 1992.

[13] R. M. Schwartz and M. O. Dayhoff.,Matri-
ces for detecting distant relationships.National
Biomedical Research Foundation, Washington,
DC, 1979.

[14] K. T. Tseng, C. B. Yang, and K. S. Huang,
“The better alignment among output align-
ments,”Journal of Computers, Vol. 3, pp. 51–62,
2007.

Table 5: The losing score latticeLSL′ of sequencesabdcd andbacddb with the scoring matrixSM′ shown in Table
4. Numbers in() represent theδ′(i, j,h), δ′(i, j,d),and δ′(i, j,v) of SM′ at position (i,j).

LSL′ -(0) b(1) a(2) c(3) d(4) d(5) b(6)
-(0) 0(∞,∞,∞) ←-3(0,∞,∞) -6(0,∞,∞) -9(0,∞,∞) -12(0,∞,∞) -15(0,∞,∞) -18(0,∞,∞)
a(1) -3(∞,∞,0) 1(7,0,7) տ6(8,0,15) 3(0,9,15) 0(0,3,15) -3(0,3,15) -6(0,8,15)
b(2) -6(∞,∞,0) 4(13,0,6) 3(2,1,0) տ6(6,0,6) 5(2,0,8) 2(0,0,8) 4(5,0,13)
d(3) -9(∞,∞,0) 1(13,5,0) 10(12,0,10) 7(0,2,4) տ13(9,0,11) 12(2,0,13) 9(0,5,8)
c(4) -12(∞,∞,0) -2(13,7,0) 7(12,6,0) 15(11,0,11) 12(0,3,2) տ15(6,0,6) 12(0,0,6)
d(5) -15(∞,∞,0) -5(13,5,0) 4(12,0,0) 12(11,3,0) 22(13,0,13) 19(0,0,7) տ17(1,0,8)

[15] K. T. Tseng, C. B. Yang, K. S. Huang, and Y. H.
Peng, “Near-optimal block alignments,”IEICE
TRANSACTIONS on Information and Systems,
Vol. E91-D, No. 3, pp. 789–795, 2008.

[16] C. B. Yang and R. C. T. Lee, “Systolic algorithms
for the longest common subsequence problem,”
Journal of the Chinese Institute of Engineers,
Vol. 10, No. 6, pp. 691–699, 1987.

