
Image Compression Based on Fratal with Classi�ation by VetorQuantization �Lih-Ching LinDepartment of Applied MathematisChang-Biau YangKuo-Tsung TsengDepartment of Computer Siene and Engineering,National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C.Email:byang�se.nsysu.edu.twAbstratThe onventional fratal enoding algorithm per-forms an exhaustive searh to �nd a lose math be-tween a range blok and a large pool of domain bloks.For a large image, the domain pool inreases obvi-ously, so the enoding time will also inrease. In thispaper, we propose a hybrid sheme by ombining thefratal image ompression with the vetor quantiza-tion. We use the longest distane �rst algorithm tolassify the domain bloks. In this way, we an reduethe range in searhing the domain pool. Experimentresults show that our method an e�etively speed upthe enoding time about ten times. In addition, thequality of our reonstruted images is still as good asthe onventional fratal algorithm.1 IntrodutionReently, image ompression beomes more andmore popular with quik development of the multi-media. An image always ontains a great amountof information, but some information loss is insensi-tive to the human eyes. Thus, we an remove suhinformation from an image to get high ompressionratio. Many image ompression methods have beenproposed, suh as vetor quantization (VQ) [5,11,15℄and fratal blok oding [1, 4, 8, 9, 15℄ and so on.Vetor Quantization (VQ) [5,11,15℄ is a well-knownmethod for image ompression. In VQ, we �rst par-tition the image into a set of bloks, then treat eah�This researh work was partially supported by the NationalSiene Counil of the Republi of China under ontrat NSC88-2213-E-110-012 .

blok as a vetor. For every vetor, we �nd the losestodeword from the odebook, then use the index ofthe odeword to represent eah vetor. In the deod-ing phase, we �nd the enoded index of eah vetorand uses the odeword with that index to representeah vetor.The fratal image ompression [1,4,6,8{10,14℄ uti-lizes the existene of loal self-similarity in an imageto enode the image. With this way, the fratal im-age ompression an obtain high ompression ratioand good quality of the reonstruted image.Jaquin has pointed out the similarity between fra-tal image ompression and VQ [8℄. Both methods usea odebook to index eah blok, whih is extratedfrom the original image. In the fratal image ompres-sion, the original image is partitioned into overlappingbloks as the odebook. Unlike the VQ, the fratalimage ompression needs not transmit the odebookto the deoder. The enoder �nds a ontrative op-erator whose �xed point is an approximation of theoriginal image. With this ontrative operator, thedeoder an use any arbitrary initial image to get anapproximate image by the iterative method. There-fore, the fratal image ompression has very high om-pression ratio. However, it takes long time to enodea fratal image. The onventional fratal enodingalgorithm performs an exhaustive searh to �nd thebest math from the odebook. In this paper, we usethe longest distane �rst (LDF) algorithm to lassifythose overlapping bloks. With our method, we anredue the number of bloks to be searhed, thus re-due the enoding time.In this paper, we fous on a fratal image ompres-sion with lassi�ation by vetor quantization. In Se-tion 2, we will review some related algorithms that weuse in this paper. The detail of our fratal enoding1



algorithm is desribed in Setion 3. The performaneof our algorithm and the experiment omparison withother fratal-based algorithms are given in Setion 4.Finally, we give a onlusion in Setion 5.2 Previous WorksFirst, we desribe a simple fratal blok enodingsheme [15℄. The original image is partitioned intoNRnonoverlapping bloks alled range bloks, denotedas Ri; 1 � i � NR, with size rs � rs. The originalimage is also partitioned into ND overlapping bloksalled domain bloks, denoted as Dj ; 1 � j � ND,with size ds� ds. Domain blok size is always largerthan range blok size, usually ds = 2rs, so we needto ontrat eah domain blok to the size of a rangeblok. Moreover, eah range blok Ri �nds the min-imum distortion Distfratal(tr(Dj); Ri), for all Dj ,and output the enoded information Ii(flag;msg).A range blok is said to be smooth if the variane ofall pixels in the blok is small. If a range blok issmooth, we don't ompute the distortion and use themean of that blok to represent it. With this way, wean both redue the enoding time and inrease theompression ratio.For a given vetor Qi = (b1; b2; : : : ; bN ), if P =(a1; a2; : : : ; aN ) is used to represent Qi, then the dis-tortion between P and Qi is de�ned as follows [15℄.Distfratal(P;Qi) = NXk=1(si � ak + oi � bk)2; (1)where si and oi are de�ned in Equation 2 and Equa-tion 3 respetively.si = N NXk=1 akbk � ( NXk=1 ak)( NXk=1 bk)N NXk=1 ak2 � ( NXk=1 ak)2 (2)oi = ( NXk=1 bk � si NXk=1 ak)=N (3)Ii(flag;msg) is used to represent the enoded bloki, where if flag = 0 then msg = fmeang, otherwise,if flag = 1 then msg = fthe oordinate; r; si; oig.The onventional fratal algorithm performs an ex-haustive searh to �nd a lose math between a rangeblok and a large pool of domain bloks. There aresome lassi�ation shemes [4, 6, 8{10, 14℄ developedto reduing the number of omparisons. Here, we willintrodue some of the shemes.

Jaquin [8,9℄ presented a sheme for lassifying thedomain bloks and range bloks. It is based to thelassi�ed vetor quantization (CVQ) [13℄, and las-si�es the bloks into three main lasses i.e. shadebloks, midrange bloks, and edge bloks. Fisher [4℄also used a similar sheme with more lasses.Hamzaoui [6,14℄ proposed a hybrid sheme by om-bining fratal image ompression with mean-removedshape-gain vetor quantization (MRSG-VQ) [5, 12℄.C. K. Lee and W. K. Lee also propose a simplemethod [10℄ based on the loal variene to redue thesearhing time on �nding a lose math between arange blok and a large pool of domain bloks.Now, we desribe the algorithm that we shall useto lassify the domain bloks. The longest distane�rst (LDF) algorithm [7℄ is a fast heuristi algorithmto generate better odebooks. It uses the longest dis-tane �rst strategy to hoose whih luster should besplit instead of the maximum desent riterion in themaximum desent (MD) algorithm [2,3℄ and it invokesthe longest distane partition tehnique to partitionone luster into two new lusters instead of the 2-levelLBG partition tehnique [3℄ or the hyperplane parti-tion tehnique [2, 3℄.The distane of two vetors P = (p1; p2; � � � ; pN )and Q = (q1; q2; � � � ; qN ) is de�ned as follows.DistV Q(P;Q) = NXj=1(pj � qj)2 (4)The longest distane partition algorithm is as fol-lows:Algorithm Longest Distane Partition (LDP)Input: The splitting luster Ci = fx1; x2; : : : ; xnig.Output: Two new lusters Ca and Cb and their rep-resentative odewords.Step 1: Calulate the entroid vi of the splittingluster Ci.Step 2: Find xa suh that DistV Q(xa; vi) =max1�j�niDistV Q(xj ; vi).Step 3: Find xb suh that DistV Q(xb; xa) =max1�j�niDistV Q(xj ; xa).Step 4: Split luster Ci into Ca and Cb. That is, ifDistV Q(xj ; xa) < DistV Q(xj ; xb) then xj 2 Ca;otherwise xj 2 Cb, 1 � j � ni.Step 5: Calulate the entroids of Ca and Cb as thetwo new odewords.2



In order to redue the partition time, the LDP al-gorithm uses a fast method [3℄ to determine whihluster x should belong to. The fast method [3℄ is asfollows:Let xj = (�1; �2; : : : ; �N ), xa = (a1; a2; : : : ; aN) andxb = (b1; b2; : : : ; bN ).Then xj is put in Ca ifNXj=1(�j � aj)2 < NXj=1(�j � bj)2: (5)So, x is plaed in Ca ifNXj=1(aj � bj)�j > 12 NXj=1(a2j � b2j ): (6)The values of (aj � bj) and 12 NXj=1(a2j � b2j ) in Equa-tion 6 are not hanged during the splitting proessand an be pre-alulated. The amount of ompu-tation an be redued to N multipliations, N � 1additions and 1 omparison. So Equation 6 is usedinstead of Equation 5.Now, we will desribe the longest distane �rst al-gorithm. The longest distane �rst algorithm hooseswhih luster should be split. It �nds the luster withthe maximum longest distane and applies the LDPalgorithm to split this luster.The longest distane �rst algorithm is as follows:Algorithm Longest Distane First (LDF)Input: The odebook size and the training set.Output: The odebook.Step 1: Split the entire training set into two newlusters by the LDP algorithm.Step 2: Let the two newly formed lusters be Ca andCb. Find the longest distanes in Ca and Cb re-spetively.Step 3: Selet the luster with the maximum longestdistane in all lusters. Split the seleted lusterinto two new lusters by using the LDP algo-rithm.Step 4: If the number of urrent lusters is equal tothe odebook size we desire, then output the en-troids of the lusters as the odebook and stop;otherwise go to Step 2.The advantages of the LDF algorithm are its speedand quality. It requires muh less time than otherodebook generation algorithms. Moreover, the qual-ity of the odebooks generated by LDF is very good,so we hoose the LDF algorithm as a base on ourfratal algorithm.

3 The Fratal Enoding with VQ Clas-si�ationThe onventional fratal algorithm spends toomuh time on �nding the best math between a rangeblok and a large pool of domain bloks. In order toredue the enoding time, we derease the searh poolby lustering all domain bloks. Our lustering algo-rithm is based on vetor quantization (VQ).For training a loal odebook in VQ, all trainingvetors are partitioned from an original image. In theend of lassi�ation, similar vetors will be put intothe same luster. Thus we utilize this onept to las-sify the domain bloks. Besides, an eÆient odebookgeneration algorithm for VQ is very important. Togenerate the odebook, we hoose an eÆient method,the longest distane �rst (LDF) algorithm whih wehave introdued in the previous setion.We an lassify the domain bloks eÆiently by us-ing the LDF algorithm. First, we extrat ND overlap-ping domain bloks from the original image and on-trat eah domain blok to the size of a range blok.The elements of the training set are the domain bloksafter applied the eight transformations. Thus, the sizeof the training set is 8ND. After applying the LDFalgorithm, we get NC odewords and lassify eahtransformed domain blok into a orrelative luster.Eah range blok �nds a nearest odeword (luster)in the odebook and then in the luster, �nds thetransformed domain blok with minimum distortionto the range blok. Finally, the enoded informationis output.Our fratal enoding algorithm is as follows.Basi PhaseInput: An original image.Output: The previous proessing results.Step 1: Partition the original imageinto NR nonoverlapping range bloks, denotedas R=fR1; R2; : : : ; RNRg.Step 2: ExtratND overlapping domain bloks from the originalimage, denoted as D=fD1; D2; : : : ; DNDg.Step 3: Contrat eah domain blok to the size of arange blok.Step 4: For eah domain blok Dj , alulate it'svariane �Dj . If �Dj < T� , where T� is a pre-de�ned threshold, then remove Dj from D.Step 5: Use the LDF algorithm to split all tr(Dj),1 � r � 8, until the number of lusters3



ahieves NC , where NC is a prede�ned ode-book size. The set of all lusters is denoted asC=fC1; C2; : : : ; CNCg and the odeword of eahluster Ck is denoted as CWk , 1 � k � NC .Algorithm AInput: An original image.Output: The enoding information.Steps 1-5: Basi Phase.Step 6: For eah range blok Ri, alulate its meanRi and variane �Ri . If �Ri < T� , then outputIi(0; Ri); otherwise do Steps 7-8.Step 7: Find k suh thatDistfratal(CWk ; Ri) is theminimum, where 1 � k � NC .Step 8:Find tr(Dj) suh that Distfratal(tr(Dj); Ri)is the minimum, 8tr(Dj) 2 Ck . Then outputIi(1; the oordinate ofDj ; r; si; oi).In Algorithm A, if a odebook of large size is built,it needs more time in Step 5 and Step 7. However,the searh time an be redued in Step 8. In addi-tion, the quality of the reonstruted image inreasesvery little with a large odebook, so we generate aodebook with a median size. The time required foralgorithm A is little, but we �nd that the quality ofthe reonstruted image is not good enough. Thus,we modify algorithm A to algorithm B by inreasingthe searh window on the odebook. That is, whenthe lose math tr(Dj) is found, more than one lusteris searhed.Algorithm BInput: An original image.Output: The enoding information.Steps 1-5: Basi Phase.Step 6: De�ne a searh window size, W .Step 7: For eah range blok Ri, alulate its meanRi and variane �Ri . If �Ri < T� , then outputIi(0; Ri); otherwise do Steps 8-9.Step 8: Find a set S = fs1; � � � ; sW g suh thatDistfratal(CWk ; Ri) � Distfratal(CWsm , Ri),8k 62 S and 8sm 2 S.Step 9: Findtr(Dj) suh that Distfratal(tr(Dj); Ri) is theminimum, 8tr(Dj) 2 Csm , m = 1; � � � ;W . Thenoutput Ii(1; the oordinate ofDj ; r; si; oi).

In order to obtain better quality, we give a searhwindow size W for searhing more lusters in algo-rithm B. Experiments also show that large windowsize will obtain the reonstruted images with betterquality, but the enoding time inreases too. Thus,we again modify the algorithm by adding a thresholdT . We use T to determine if a transformed domainblok tr(Dj) is good enough to represent the rangeblok. If it is, we do not searh other lusters further-more.Algorithm Longest Distane First FratalEnodingInput: An original image.Output: The enoding information.Steps 1-5: Basi Phase.Step 6: De�ne a searh window size, W , and athreshold, T .Step 7: For eah range blok Ri, alulate its meanRi and variane �Ri . If �Ri < T� , then outputIi(0; Ri); otherwise do Steps 8-9.Step 8: Find a set S = fs1; � � � ; sW g suh thatDistfratal(CWk ; Ri) � Distfratal(CWsm , Ri),8k 62 S and 8sm 2 S.Step 9:Find tr(Dj) suh that Distfratal(tr(Dj); Ri) <T or Distfratal(tr(Dj); Ri) is the minimum,8tr(Dj) 2 Csm , m = 1; � � � ;W . Then outputIi(1, the oordinate of Dj , r, si, oi).The longest distane �rst (LDF) fratal enodingalgorithm e�etively redues the enoding time withthe threshold T . Small threshold T will obtain thereonstruted images with better quality, but the re-dued time is not as muh as that with large thresh-old. We use the LDF fratal enoding algorithm toompare with other fratal enoding algorithms inthis paper. Our experiment results are listed in thenext setion.4 Experiment Results and Perfor-mane AnalysisIn this setion, we show our experiment results andanalyze the performane of our algorithms. Our al-gorithm is implemented by Borland C++ Builder onPC with Intel CeleronTM proessor 300A MHz and 64MB RAM. Our testing images inlude "Lena", "F16",4



"Pepper" and "Baboon". All of these images are of256 gray levels with resolution 256� 256.To measure the quality of the reonstruted image,we use the peak signal-to-noise ratio (PSNR), whihis de�ned as:PSNR = 10 log10[ 25521L�LPLi=1PLj=1(xij � x̂ij)2 ℄;where L�L = size of image, xij = pixel value of theoriginal image at oordinate (i; j), and x̂ij = pixelvalue of the reonstruted image at oordinate (i; j)[3, 7℄.All deoding proess in this paper uses an imagewith the initial value of eah pixel is 128. And si andoi in Equation 2 and Equation 3 are quantized to 3bits and 7 bits respetively.Now, we would like to show some of our experi-ment results. Table 1 shows the PSNR and the en-oding time of our algorithm with various parameters.We �nd that large searh window size will get bet-ter quality. However, a small searh window size willredue the enoding time. Aording to the expri-ment results, we an get near PSNR if the thresholdT = 9 � N . Thus, the best parameters in our algo-rithm are that odebook size = 500, window size =15 and T = 9�N .Table 2 shows the omparison of the PSNRs in it-erations 1 through 9 for the onventional fratal al-gorithm, the loal variane fratal algorithm and ouralgorithm. The PSNR of our algorithm onverges af-ter the sixth iteration but the loal variane algorithmonverges after the 8th or 9th iteration. Finally, theperformane analysis is summarized in Table 3. Therelative speedup of our algorithm to the onventionalexhaustive searh algorithm is about ten times. Notonly our algorithm is faster than onventional fratalalgorithm, but also the quality of our reonstrutedimages is as good as that of the onventional fratalalgorithm. Our algorithm is also faster than the loalvariane algorithm. We also test for the 512 � 512Lena image and the experiment results are shown inTable 4. In Table 4, we �nd that the performane ofour algorithm with the 512� 512 Lena image is alsovery good.5 ConlusionIn this paper, we propose a fast enoding algo-rithm for fratal image ompression based on ve-tor quantization. In the onventional fratal enodingalgorithm, eah range blok performs an exhaustivesearh to �nd a best math from the domain pool,so a large domain pool will signi�antly inrease thesearh time. Thus, we propose a sheme to lassify

Table 1: The PSNR and time of our algorithm withvarious parameters. NC : odebook size, W : searhwindow size, T : threshold, N : range blok size �range blok size. Test image is Lena 256 � 256. (a)Domain blok size: 16� 16; range blok size: 8 � 8;bpp: 0.379. (b) Domain blok size: 8�8; range bloksize: 4� 4; bpp: 1.232. Time (se)ParametersNC = 500 PSNR LDFlustering Fratalenoding TotalW = 1 27.4351 197.735 52.212 249.947W = 5 27.9438 197.870 179.116 376.986W = 10 28.0895 197.824 337.957 535.781W = 15 28.1305 197.850 473.223 671.073W = 15 28.1149 198.784 302.135 500.919T = 9NW = 15 28.0427 198.815 253.136 451.951T = 16N (a) Time (se)ParametersNC = 500 PSNR LDFlustering Fratalenoding TotalW = 1 32.8442 93.449 115.315 208.764W = 5 33.5797 93.735 376.951 470.686W = 10 33.7773 93.760 723.731 817.491W = 15 33.8678 93.751 1004.328 1098.079W = 15; 33.6956 86.066 407.394 493.460T = 9N (b)the domain bloks by using the longest distane �rst(LDF) algorithm. In average, our method an reduethe searh spae to searh window sizeodebook size = WNC at least,the perentage is 15500 = 3% in this paper. Theoret-ially, we an also redue the same perent of theenoding time. That is, we should redue the enod-ing time about 33 times when the perentage is 3%,but atually it is only about ten times. The reasonis, the overhead in training the odebook and �ndingthe losest odeword set. Thus, how to derease theoverhead is one of our future works.Experiment results show that our method is fasterthan the onventional fratal enoding method andthe loal variane method, and we still have goodquality of the reonstruted images under the sameompression ratio.Referenes[1℄ M. F. Barnsley, Fratals everywhere. San Diego,USA: Aademi Press, In., 1988.5



Table 2: Comparison of the PSNRs after exeuting 1through 9 iterations. (a) Domain blok size: 16� 16;range blok size: 8�8; bpp: 0.379. (b) Domain bloksize: 8� 8; range blok size: 4� 4; bpp: 1.232.PSNR# ofiterations Conventionalfratal LDFfratal Loalvarianefratal1 19.135 19.416 18.0772 22.594 22.914 21.2603 25.470 25.737 24.1184 27.319 27.444 26.1555 27.982 28.044 27.1406 28.145 28.167 27.3967 28.153 28.144 27.4648 28.142 28.125 27.4789 28.136 28.115 27.479(a) PSNR# ofiterations Conventionalfratal LDFfratal Loalvarianefratal1 21.031 21.710 20.0102 25.769 26.457 24.2543 29.989 30.482 28.3164 32.680 32.757 31.3975 33.687 33.514 32.9036 33.950 33.711 33.4217 33.982 33.710 33.5418 33.967 33.702 33.5599 33.959 33.696 33.551(b)[2℄ C. K. Chan and C. K. Ma, \Maximum desentmethod for image vetor quantization," Eletron-is Letters, Vol. 27, No. 19, pp. 1772{1773, Sep.1991.[3℄ C. K. Chan and C. K. Ma, \A fast method of de-sign better odebooks for image vetor quantiza-tion," IEEE Transations on Communiations,Vol. 42, No. 2/3/4, pp. 237{243, Feb./Mar./Apr.1994.[4℄ Y. Fisher, Fratal image ompression: theoryand appliation. New York, USA: Springer-Verlag, 1994.[5℄ A. Gersho and R. M. Gray, Vetor quantizationand signal ompression. Boston, USA: KluwerAademi Publishers, seond ed., 1992.[6℄ R. Hamzaoui, \Codebook lustering by self-organizing maps for fratal image ompression,"Fratals, Vol. 2, No. 0, 1994.[7℄ M. C. Huang and C. B. Yang, \Fast algorithmfor designing better odebooks in image ve-

Table 3: Performane of various fratal algorithms.LDF fratal is our algorithm; the window size of loalvariane fratal I is 3000. The window size of loalvariane fratal II in (a) is 10000 and in (b)is 24000.(a) Domain blok size: 16�16; range blok size: 8�8;(b) Domain blok size: 8� 8; range blok size: 4� 4.Conventional LDF Loalvariane LoalvarianeAlgorithm fratal fratal fratal I fratal IILena PSNR 28.136 28.115 27.159 27.479bpp= Time 5262.174 500.919 541.105 895.1340.379 (se)F16 PSNR 25.792 25.630 25.113 25.293bpp= Time 4369.355 425.703 451.424 746.0700.339 (se)Pepper PSNR 26.957 26.884 26.211 26.484bpp= Time 5722.120 610.994 586.935 972.1300.461 (se)Baboon PSNR 23.149 23.075 22.801 22.918bpp= Time 7073.116 637.094 717.960 1173.3900.400 (se) (a)Conventional LDF Loalvariane LoalvarianeAlgorithm fratal fratal fratal I fratal IILena PSNR 33.959 33.696 32.331 33.551bpp= Time 5345.645 493.460 536.320 2081.6760.379 (se)F16 PSNR 32.195 32.025 30.290 32.000bpp= Time 4895.065 552.324 500.595 1927.0501.176 (se)Pepper PSNR 33.341 33.147 31.964 32.912bpp= Time 6032.285 616.644 589.800 2277.3701.759 (se)Baboon PSNR 27.106 26.952 25.388 26.514bpp= Time 9580.355 1200.984 980.895 3636.0901.316 (se) (b)tor quantization," Optial Engineering, Vol. 36,pp. 3265{3271, De. 1997.[8℄ A. E. Jaquin, \Image oding based on a frataltheory of iterated ontrative image transforma-tions," IEEE Transations on Image Proessing,Vol. 1, No. 1, pp. 18{30, Jan. 1992.[9℄ A. E. Jaquin, \Fratal image oding: a re-view," Proeedings of the IEEE, Vol. 81, No. 10,pp. 1451{1465, Ot. 1993.[10℄ C. K. Lee and W. K. Lee, \Fast fratal imageblok oding based on loal varianes," IEEETransations on Image Proessing, Vol. 7, No. 6,pp. 888{891, June 1998.[11℄ Y. Linde, A. Buzo, and R. M. Gray, \An algo-rithm for vetor quantizer design," IEEE Trans-ations on Communiations, Vol. C-28, No. 1,pp. 84{95, Jan. 1980.[12℄ T. Murakami, K. Asai, and E. Yamazaki, \Vetorquantization of video signals," Eletronis Let-ters, Vol. 7, pp. 1005{1006, 1982.[13℄ B. Ramamurthi and A. Gersho, \Classi�ed ve-tor quantization of images," IEEE Transationson Communiations, Vol. 34, No. 11, pp. 1105{1115, Nov. 1986.[14℄ D. S. Raouf Hamzaoui, Martin M�uller, \VQ-Enhaned fratal image ompression," IEEEInternational Conferene on Image Proessing(ICIP'96), Lausanne, Sept. 1996, pp. 1{4.6



Table 4: Performane of various fratal algorithmswith the 512�512 Lena image. the parameters in ouralgorithm are that odebook size = 2000, window size= 15 and T = 9�N . (a) Domain blok size: 16� 16;range blok size: 8 � 8; bpp: 0.380; the window sizeof loal variane fratal is 40000. (b) Domain bloksize: 8 � 8; range blok size: 4 � 4; bpp: 1.289; thewindow size of loal variane fratal is 96000.(a) (b)Algorithm PSNR Time PSNR Time(se) (se)Conventional 29.990 131968.480 35.058 88763.863fratalLDF 29.860 20665.195 34.817 7297.361fratalLoal variane 29.379 34826.097 34.587 31865.435fratal[15℄ S. C. Tai, Data ompression. Taipei, Taiwan:Unalis, seond ed., 1998.
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