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Near-Optimal Block Alignments∗

Kuo-Tsung TSENG†, Chang-Biau YANG†,††a), Nonmembers, Kuo-Si HUANG†, Student Member,
and Yung-Hsing PENG†, Nonmember

SUMMARY The optimal alignment of two given biosequences is math-
ematically optimal, but it may not be a biologically optimal one. To inves-
tigate more possible alignments with biological meaning, one can relax the
scoring functions to get near-optimal alignments. Though the near optimal
alignments increase the possibility of finding the correct alignment, they
may confuse the biologists because the size of candidates is large. In this
paper, we present the filter scheme for the near-optimal alignments. An
easy method for tracing the near-optimal alignments and an algorithm for
filtering those alignments are proposed. The time complexity of our al-
gorithm is O(dmn) in the worst case, where d is the maximum distance
between the near-optimal alignments and the optimal alignment, and m and
n are the lengths of the input sequences, respectively.
key words: computational biology, longest common subsequence, biose-
quence alignment, near-optimal alignments

1. Introduction

Biosequences comparison [1]–[5] could be regarded as the
sequence alignment problem, which is a well studied prob-
lem in the algorithm area [6]–[10]. With proper measuring
schemes, it is not difficult to find the optimal alignment of
given sequences. However, there is no completely suitable
measuring scheme in biosequences. Scientists have pre-
sented many scoring functions to measure the similarity of
biosequences [11]–[13]. Most of them failed. There always
exist some biosequences with lower scores but higher simi-
larities (judged by biologists or experiments) with any kind
of scoring function.

Naor and Brutlag showed that the alignment with op-
timal score is not always the most biologically meaningful
one [14], so they presented the near-optimal alignment in
order to provide more possible alignments for biologists to
choose. It is natural that the possibility of finding the correct
alignment will be increased if we provide more alignments,
which, however, may confuse the biologists because of their
large cardinality. Thus, some biologically filtering criteria
are needed to help us to choose the correct alignment.
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In this paper, we present an easy method to trace
the near-optimal alignments of given biosequences and
propose a novel algorithm to filter the output with some
biologically meaningful criteria. We use the criterion:
the most conserved alignment proposed by Tseng et
al. [15] as the example in our algorithm and name it
the near-optimal block alignment. Our program URL is
http://bio.cse.nsysu.edu.tw/NBA/. It is easy to implement
and its computational time is small and might have chances
to find the same result as the affine gap penalty does. The
criteria to determine meaningful alignments could be open
to discussion. The time complexity will not be increased if
the filter can be done in linear time.

The rest of this paper is organized as follows. In Sect. 2,
we shall give an easy method to trace the near-optimal align-
ments. Next, we shall illustrate the proposed algorithm to
filter out the desired alignment by the most conserved cri-
terion in Sect. 3. Finally, some discussions and conclusions
will be given in Sect. 4.

2. Tracings in the Alignment Lattice

In this section, we shall demonstrate the idea of tracings in
the alignment lattice, and show how they help us to find the
optimal and near-optimal alignments. Let S 1 and S 2 be two
input sequences, where |S 1| = m and |S 2| = n. We first
use an example to explain our idea. Suppose two sequences
S 1 = abdcd and S 2 = bacddb are given to be aligned with
the score matrix shown in Table 1. We then have the align-
ment lattice AL of sequences S 1 and S 2 shown in Fig. 1
after performing the traditional alignment scheme [6]–[10].

The bold lines in Fig. 1 represent the correct alignments
in the corresponding positions. The numbers beside lines
are the costs of alignments. It is well known that the opti-
mal alignment can be obtained if we trace back the align-
ment lattice AL from the lower right corner to the upper left
corner [8]. In our example, there are two optimal alignments
abdcd--
-bacddb

and abdc-d-
-bacddb

.

Table 1 The score matrix of {a,b,c,d}.
- a b c d

- −∞ −1 −1 −1 −1
a −1 4 1 0 2
b −1 1 3 0 −2
c −1 0 0 2 1
d −1 2 −2 1 1
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Fig. 1 The alignment lattice AL of sequences abdcd and bacddb with
the score matrix shown in Table 1.

To find the optimal alignment of two given sequences
is easy, but how to find those alignments which are within d
score compared to the optimal alignment needs some tricks.
The optimal alignment means that we choose the correct
alignment, for example bold lines in Fig. 1, in each posi-
tion. What would it be if we choose the wrong alignment
somewhere? The score of somewhere-wrong-alignment is
worse than the optimal alignment, but how bad will it be?

Let P = (i, j,U) denote the alignment from position
(i, j) to the U direction, where 0 ≤ i ≤ m, 0 ≤ j ≤ n,
and U ∈ {H,V,D}. The U direction of {H,V,D} means the
Horizontal, Vertical, or Diagonal direction. We define the δ
function to calculate the effect when the alignment P, with
respect to AL(i, j), is chosen as follows.

δ(P) = AL(i, j) +⎧⎪⎪⎪⎨⎪⎪⎪⎩
−AL(i, j − 1) − S coreMatrix(−, S 2 j) if U = H,
−AL(i − 1, j) − S coreMatrix(S 1i,−) if U = V,
−AL(i − 1, j − 1) − S coreMatrix(S 1i, S 2 j) if U = D,

where S 1i and S 2 j represent the ith and jth characters of
S 1 and S 2, respectively.

Traditionally, AL(i, j) is undefined when i < 0 or j < 0,
so that δ(P) = ∞ if an undefined value is encountered. We
use examples to illustrate the effect measurement of δ(P).
For example, suppose P = (5, 6,D) which is an incorrect
alignment in Fig. 1. Clearly, δ(P) = 2 here. If P is chosen
and afterward we choose the correct alignments, i.e. bold
lines, from position (4, 5) till position (0, 0). The result
score would be optimal score − δ(P) = 5 − 2 = 3. As
another example, we follow the bold lines from position (5,
6) till position (4, 4), P = (4, 4,D) is chosen, and afterward
we follow the bold lines from position (3, 3) till position
(0, 0). Here, δ(P) = 1. It will construct an alignment with
score = 5 − δ(P) = 5 − 1 = 4. Similarly, δ(4, 4,H) = 0 and
δ(4, 4,V) = 2.

It is easy to prove that we choose all the ways of correct

Fig. 2 Tracings in optimal and near-optimal alignments of sequences
abdcd and bacddb.

alignments from the lower right corner to P, and then choose
all the ways of correct alignments from P to the upper left
corner, we will construct an alignment with score δ(P) less
than the optimal alignment. In other words, δ(P) = 0 if and
only if the alignment P is the correct alignment in the cor-
responding position, i.e. the bold lines in Fig. 1. With this
fact, we are able to find the near-optimal alignments within
d score less than the optimal score. Figure 2 shows the near-
optimal alignment example of the sequences given above
with d = 2. The possible partial alignments for constructing
the near-optimal alignments are called tracings. Hollow ar-
rows in layer 0 (L0) will construct the optimal alignments,
solid arrows will construct the near-optimal alignments with
score optimum−1 in layer 1 (L1) and simple arrows in layer
2 (L2) have similar meaning but with score optimum − 2.

Our method to mark tracings is shown as follows.
These tracings are recorded from the lower right corner back
to the upper left corner. This method can be regarded as a
traditional back tracing technique if d is set to 0. It will help
us to process those possible partial alignments that may be
used to construct the near-optimal alignments if d is greater
than 0. The function EnQ(x, Y) is used to add element x
into queue Y, and the function x = DeQ(Y) is used to re-
move the first element of queue Y and to store it in x. El-
ements in a queue are in the form of [k](i, j), which means
the position (i, j) of layer k. TRk(i, j,U) = α represents an
possible alignment coming from layer α (0 ≤ α ≤ k ≤ d)
in the U (U ∈ {H,V,D}) direction to position (i, j) of layer
k. Note that TRk(i, j,U) = −1 means that there is no pos-
sible alignment coming from the U direction, For example,
TR2(4, 5,V) = 0 represents an alignment going to position
(4, 5) of layer 2 in the V direction from layer 0. (Since it
comes from the V direction, we know the position of it is (5,
5).) Q is a temporary queue in the tracing marking method
and queue R will be used in our near-optimal block align-
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Table 2 All near-optimal alignments of sequences abdcd and bacddb when d = 2, τ = 0 and ψ = 2.

Layer Alignment A ω

0 a|bdc|-|d|-
-|bac|d|d|b

{τ−1 , τ+3 , τ−1 , τ+1 , τ−1 } 12 + 32 + 12 + 12 + 12 = 13

0 a|bdcd|--
-|bacd|db

{τ−1 , τ+4 , τ−2 } 12 + 42 + 22 = 21

1 -|a|b|dcd|-
b|a|-|cdd|b

{τ−1 , τ+1 , τ−1 , τ+3 , τ−1 } 12 + 12 + 12 + 32 + 12 = 13

1 abdcd|-
bacdd|b

{τ+5 , τ−1 } 52 + 12 = 26

1 a|bd|-|cd|-
-|ba|c|dd|b

{τ−1 , τ+2 , τ−1 , τ+2 , τ−1 } 12 + 22 + 12 + 22 + 12 = 11

2 -|a|b|dc|-d
b|a|c|dd|b-

{τ−1 , τ+1 , τ=1 , τ+2 , τ−2 } 12 + 12 + 12 + 22 + 22 = 11

2 -|a|b|dc|d
b|a|c|dd|b

{τ−1 , τ+1 , τ=1 , τ+2 , τ−1 } 12 + 12 + 12 + 22 + 12 = 8

2 -|a|b|dc|d-
b|a|c|dd|-b

{τ−1 , τ+1 , τ=1 , τ+2 , τ−2 } 12 + 12 + 12 + 22 + 22 = 11

2 -|a|b|d|c|d|-
b|a|c|d|-|d|b

{τ−1 , τ+1 , τ=1 , τ+1 , τ−1 , τ+1 , τ−1 } 12 + 12 + 12 + 12 + 12 + 12 + 12 = 7

2 a|b|dc|-|d|-
b|-|ac|d|d|b

{τ+1 , τ−1 , τ+2 , τ−1 , τ+1 , τ−1 } 12 + 12 + 22 + 12 + 12 + 12 = 9

2 a|b|dcd|--
b|-|acd|db

{τ+1 , τ−1 , τ+3 , τ−2 } 12 + 12 + 32 + 22 = 15

2 -|a|b|d|cd|-
b|a|c|-|dd|b

{τ−1 , τ+1 , τ=1 , τ−1 , τ+2 , τ−1 } 12 + 12 + 12 + 12 + 22 + 12 = 9

2 a|b|-|dcd|-
-|b|a|cdd|b

{τ−1 , τ+1 , τ−1 , τ+3 , τ−1 } 12 + 12 + 12 + 32 + 12 = 13

ment algorithm, which will be demonstrated in Sect. 3. Ac-
tually, the tracing marking method and near-optimal block
alignment algorithm can be done together, so that we can
use one queue Q only. It is for clarity that we explain our
idea in this way.

Method: Tracing Marking
Input: Alignment lattice AL with threshold d.
Output: Tracing queue R and tracings (possible align-

ments) TR that construct near-optimal alignments
within d score compared to the optimal alignment.

Step 1: Initialization: TRk(i, j,U) = −1, where 0 ≤ k ≤
d, 0 ≤ i ≤ m, 0 ≤ j ≤ n and U ∈ {H,V,D}. Q = ∅,
R = ∅.

Step 2: EnQ([0](m, n),Q), EnQ([0](m, n),R).
Step 3: If Q � ∅, then B = DeQ(Q); otherwise, stop.
Step 4:

Let the content of B be [k](i, j)

and
α = δ((i, j,H)) + k,
β = δ((i, j,V)) + k,
γ = δ((i, j,D)) + k,

then

⎧⎪⎪⎪⎨⎪⎪⎪⎩
EnQ([α](i, j − 1),Q),
EnQ([α](i, j − 1),R),
TRα(i, j − 1,H) = k,

if α ≤ d,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
EnQ([β](i − 1, j),Q),
EnQ([β](i − 1, j),R),
TRβ(i − 1, j,V) = k,

if β ≤ d,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
EnQ([γ](i − 1, j − 1),Q),
EnQ([γ](i − 1, j − 1),R),
TRγ(i − 1, j − 1,D) = k,

if γ ≤ d.

Step 5: Go to Step 3.

In the above tracing marking method, we do our tracing
starting from the lower right corner, so Step 2 adds [0](m, n)
on layer 0 as the first (source) element of our queue. At Step
4, we process the extracted element B and then calculate the
effect of each direction. Since element B is at layer k, B
will go to layer α if P = (i, j,H) is chosen. If α > d, we
ignore it. Otherwise we add the next position into our queue
and record that it comes from layer k. For example in Fig. 2,
element [0](4, 4).{α, β, γ} = {0, 2,1} represents that it goes to
layers 0, 2 and 1 in the H,V and D directions, respectively.

3. An Algorithm for Near-Optimal Block Alignment

In Sect. 2, we gave the method to trace back all near-optimal
alignments. Actually, there are numerous near-optimal
alignments even when d is small. All near-optimal align-
ments of Fig. 2 are listed in Table 2. As we can see, there are
2 alignments in layer 0 (Position (5, 5) in layer 0 branches
two ways), 3 alignments in layer 1 (Position (3, 3) branches
two ways and one of them branches three ways again at po-
sition (2, 2), but only two ways go to layer 1, so 1 + 2 = 3.)
and 8 alignments in layer 2. It is not so useful if we just list
all of the near-optimal alignments. Some filtering schemes
should be invoked to help us to choose the most meaningful
alignment. The filtering scheme could be various in many
aspects. Here we use the most conserved alignment which
was defined by Tseng et al. [15] as our filtering scheme. The
idea of the near-optimal block alignment is similar to find-
ing motifs between two sequences. When two biosequences
are aligned, the common parts of them are more meaningful.
Those parts may be some functional genes or help us to se-
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Fig. 3 The final result of sequences abdcd and bacddb after Algorithm NBA is performed.

lect the better templates when predicting the 3D structure of
proteins based on the homology modeling technique [16].
Sometimes we need to focus our attention on their differ-
ent parts to cast the junk of biosequences. Concluding the
above, we have to divide the sequences into either com-
mon/meaningful or different/junk parts, and we call these
parts as blocks in this paper. The longer blocks are the better
since the longer common/different parts are more significant
than the shorter ones.

In this section, we shall propose an algorithm to
solve the near-optimal block alignment problem. Given
τ ∈ R, a τ+i -block, τ=i -block, or τ−i -block is a max-
imum area with score continuously greater than, equal
to, or less than the threshold τ, respectively, where i
represents the length of that block. τ is a threshold
used to judge if an alignment of two characters is sim-
ilar enough or not. For example, suppose τ = 0, the
alignment -abdcd-

bacdd-b
can be divided into τ−1 |τ+1 |τ=1 |τ+2 |τ−2 ,

which is
−1 | 4 | 0 | 1 1 | −1 −1
− | a | b | d c | d −
b | a | c | d d | − b

, where

the score of each character pair is shown upon it.
As another example, suppose τ = 2. The same
alignment is now divided into τ−1 |τ+1 |τ−5 , which is
−1 | 4 | 0 1 1 −1 −1
− | a | b d c d −
b | a | c d d − b

. Note that the way to

divide an alignment into τ − blocks is unique. For example,
it is invalid if we divide the above alignment into τ−1 |τ+1 |τ−2 |τ−3
with τ = 2, since a τ− block is a maximum continuous area,
and then τ−2 |τ−3 should be merged into τ−5 .

After two sequences have been aligned, the alignment
(A) could be regarded as a list of τ−blocks. Tseng et al. [15]
defined ω in their paper to judge if an alignment is con-
versed. The formal definition of ω is given as follows.

A = {τt1
a1
, τt2

a2
, · · · , τtl

al
},

where l is the number of blocks in A, ti ∈ {+,=,−}, 1 ≤ i ≤ l.
And,

ω(A) =
∑

1≤i≤l(ai)ψ,

where ψ is a parameter which is 2 in this paper.
The near-optimal block alignment will be A if ω(A) is

maximum. An example is illustrated in Table 2.
Clearly, the alignment with larger ω means the align-

ment with longer blocks. As we mentioned before, the
longer blocks are the better. The near-optimal block align-
ment problem is to find the alignment with the maximum

ω in all near-optimal alignments, which is abdcd|-
bacdd|b

in our

example when d = 2, τ = 0 and ψ = 2.
Let us take sequences abdcd and bacddb as our ex-

ample in Fig. 3. There are three little squares inside each
square. Each little square represents the accumulated ω
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from the lower right corner (position (6, 5)) of layer 0 to this
position in the respective direction. If there are two numbers
in the little square, then the left number represents ω and the
other denotes the current block length at that position. The
current block length is 0 if it is not shown. The circle po-
sitions means impossible alignments, so we will not show
them.

Before presenting our algorithm, we first explain the
meanings of variables used in the algorithm. The align-
ment lattice AL is of size (m + 1) × (n + 1), where m and
n are the lengths of the two given sequences, respectively.
In our algorithm, C(i, j,U) (U ∈ {H,V,D}) denotes the
added score (edge weight) from the prior horizontal, ver-
tical, or diagonal position to position (i, j), and ωk(i, j,U)
(U ∈ {H,V,D}) denotes the maximum

∑
1≤i≤k(ai)ψ from po-

sition (m, n) of layer 0 across the prior horizontal, vertical,
or diagonal positions to position (i, j) of layer k. The last,
Lk(i, j,U) (U ∈ {H,V,D}) denotes the current block length
of position (i, j) of layer k that comes from various direc-
tions. Our algorithm is given as follows.

Algorithm: Near-optimal Block Alignments (NBA)
Input: Alignment lattice AL, tracings of possible align-

ments TR and tracing queue R.
Output: Maximum ω among all near-optimal alignments.
Step 1: Initialization: ωk(i, j,U)=0 and Lk(i, j,U)=0,

where 0 ≤ k ≤ d, 0 ≤ i ≤ m, 0 ≤ j ≤ n, and
U ∈ {H,V,D}.

Step 2: C(i, j,U) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ScoreMatrix(−, S 2 j) if U = H,
ScoreMatrix(S 1i,−) if U = V,
ScoreMatrix(S 1i, S 2 j) if U = D,

where S 1i and S 2 j represent the ith and jth characters
of S 1 and S 2, respectively and 0 ≤ i ≤ m, 0 ≤ j ≤ n,
and U ∈ {H,V,D}.
C(i, j,U) = ∞ if an undefined value is encountered.

Step 3: If R � ∅, then B = DeQ(R); otherwise go to Step 6.
Step 4: Let [k](i, j) be the content of B.

Δ = TRk(i, j,U),

ωk(i, j,U) =

{
Choose(k, i, j,Δ,U) if Δ ≥ 0,
0 if Δ = −1,

where U ∈ {H,V,D}.
ωk(i, j,U) = 0 if an undefined value is encountered.

Step 5: Go to Step 3.
Step 6: Output max(ωk(0, 0,U)+(Lk(0, 0,U))ψ), where 0 ≤

k ≤ d, U ∈ {H,V,D}.
For example in Fig. 2, suppose element [2](3, 4) has to

be processed now. It is clear that there is no incoming edge
from direction H, so ω2(3, 4,H) = 0. And there is only
one way to go to the position (3,4) of layer 2 in V direction,
we will leave the ω2(3, 4,V) out of discussion. If we want
to decide the value of ω2(3, 4,D), we have to look over all
the incoming edges of position (4,5) of layer 2. (Position
(4,5) is the prior position of position (3,4) in direction D.)
In this case, it has three incoming edges from H, V and D
directions. (Directions V and D come in from layer 0, and
direction H comes from layer 2.) Though we have known

the values of ω and L of those prior positions, we need to
check if the current block can be extended or not when we
choose the edge of some direction. All three incoming edges
get negative scores, but we get positive score in D direction.
(Threshold τ is 0 in our example.) It means that a new block
starts, and then we have to reset current block length to 1 and
to calculate the currentω by adding the powerψ (ψ is an pre-
defined parameter, which is 2 in this paper.) of prior block
length. ω2(3, 4,D){H,V,D} = {4, 4, 1} in this case, since we
have to choose the maximum, ω2(3, 4,D) = 4. Note that
if there are more than one maximum, we should choose the
one with the longest current block length.

Since it is complicated to decide the correct value
of ωk(i, j,U), we use the function Choose(k, i, j,Δ,U) to
choose the value. We show function Choose(k, i, j,Δ,U)
and the meanings of its arguments as follows.

Function: Choose(k, i, j, Δ, U)
Input: k, i and j, where k is the index of the layer, i, j

mean the coordinates, Δ is the incoming layer and U ∈
{H,V,D} means the direction that it came from.

Output: The correct value of ωk(i, j,U), and the value of
Lk(i, j,U) which is updated to a correct one.

Step 1: (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(i, j + 1) if U = H.
(i + 1, j) if U = V.
(i + 1, j + 1) if U = D.

Step 2: Check if the phase is changed from (x, y,U′) to
(i, j,U), where (x, y,U′) represent the outgoing edge
of direction U ′ at position (x, y).
A phase is said to be changed if and only if one of the
following conditions holds.⎧⎪⎪⎪⎨⎪⎪⎪⎩

C(x, y,U′) < τ & C(i, j,U) ≥ τ,
C(x, y,U′) > τ & C(i, j,U) ≤ τ,
C(x, y,U′) = τ & C(i, j,U) � τ,

where U ′ ∈ {H,V,D}.
A changed phase means a new block, and we have to
reset the length of current block to 1.

Step 3:
Compute the following:

TempL[U′] =⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if phase is changed

from (x, y,U′) to (i, j,U),
LΔ(x, y,U′) + 1 otherwise,

where U ′ ∈ {H,V,D}.

Tempω[U′] =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωΔ(x, y,U′) + (LΔ(x, y,U′))ψ + (TempL[U ′])ψ
(if phase is changed from (x, y,U′) to (i, j,U)),

ωΔ(x, y,U′) + (TempL[U′])ψ
(otherwise),

where U ′ ∈ {H,V,D}.
Step 4: Without loss of generality, assume that Tempω[Z]

is not less than the other two. Then:
Lk(i, j,U) = TempL[Z]

OK =
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Table 3 An example of protein sequences which affine gap penalty and NBA (layer 14) result in the
same alignment.

Protein sequence S1 VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSH

(PDB ID= 1hgb C) GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKL

LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR

Protein sequence S2 VHFTAEEKAAVTSLWSKMNVEEAGGEALGRLLVVYPWTQRFFDSFGNLSS

(PDB ID= 1a9w E) PSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKPAFAKLSELHCDKLHVDP

ENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH

Scoring function: PAM250 ; Gap Penalty: -9 (for origin, affine gap penalty and NBA)
Parameters Gap Opening Penalty: -18 (for affine gap penalty only)

τ: -8.5 (for NBA only)

V-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFD------LSHGSAQVKGHGKKVADALTNAVAH
VHFTAEEKAAVTSLWSKM--NVEEAGGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKN

Alignment by affine gap
penalty and NBA

VDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
MDNLKPAFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH

V-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-H----GSAQVKGHGKKVADALTNAVAH
VHFTAEEKAAVTSLWSKM--NVEEAGGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKN

Original optimal alignment
VDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
MDNLKPAFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωΔ(x, y, Z) + (LΔ(x, y, Z))ψ

(if phase is changed from (x, y, Z) to (i, j,U)),

ωΔ(x, y, Z)
(otherwise).

Notice that if there are more than one maximum in
Tempω{H,V,D}, we should find the most benefit one,
i.e. the one with the longest current block length, as
our Z.

Step 5: Return(OK).

Figure 3 shows the full result after NBA algorithm
is performed. In this example, the maximum ω is 21 of

layer 0, with the alignment a|bdcd|--
-|bacd|db

; 26 of layer 1, with

the alignment abdcd|-
bacdd|b

; 15 of layer 2, with the alignment
a|b|dcd|--
b|-|acd|db

. As we can see, there is a positive block with

length 5 in layer 1. It means that the block may be more
meaningful if it is in biosequences.

It is clear that the time complexity of Algorithm NBA
is O(dmn). We may reduce the time complexity to O(|R|)
which is much less than O(dmn) if we skip the initialization
in Step 1.

4. Discussions and Conclusions

We compare our algorithm (NBA) with the affine gap
penalty alignment since it is widely believed that affine gap
is more appropriate for alignments with biological mean-
ing. There is no doubt about that the result of affine gap
penalty alignment belongs to near-optimal alignments when
the original scoring function is applied. (Since the thresh-
old d in the “near” definition can be adjusted, any alignment
falls in near-optimal alignments.) The question now is: Can
NBA find the alignment with the fewest gap blocks in align-

ments of the same scores? By the definition of ω, it is clear
that finding the maximum ω implies finding the fewest (or
longest, not always but usually) τ − blocks since the sum of
τ − block lengths is almost fixed. Therefore, if gap blocks
can be regarded as τ− − blocks, NBA might have chances to
find the same alignment as affine gap does.

For example, there are two real protein sequences S 1
and S 2 in Table 3 to be aligned. Since the worst matched
score in PAM250 is −8 and we hope that the gap blocks can
be regarded as τ− − blocks in NBA, gap penalty is set to −9
(less than −8) and then τ is set to −8.5 (between the worst
matched score and the gap penalty). After NBA is executed,
we have exactly the same alignment in layer 14 as affine gap
penalty does if gap opening penalty is −18. This result im-
plies with careful parameter setting, our NBA may do what
affine gap penalty does. By the way, the computational time
for our example in Table 3 is 0.06 seconds in a Linux server
with 2 GB RAM and an AMD Athlon(tm) 64 X2 Dual Core
Processor 3800+ CPU.

The difference between NBA and affine gap penalty
is the block. NBA tries to maximize the τ+ − blocks and
minimize the τ− − blocks, which holds when the resulting
alignment is close enough to optimum, but the latter focuses
on the gapped blocks only. They may have the same re-
sult if gapped blocks can be seen as τ− − blocks. Usually
the nucleic acid sequences are easy to do so by modifying
the original scoring function, but protein sequences are not
since some mismatches are worse than the gaps.

In this paper, we present a method to mark the tracings
of all near-optimal alignments within d score compared to
the optimal alignment. And then, we propose an algorithm
to solve the near-optimal block alignment problem. Both
the method and the algorithm can be implemented easily
and efficiently. The filtering scheme can be replaced by any
one mentioned by Tseng et al. [15] or other criteria easily.
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The time complexity will remain the same if the criteria can
be done in linear time.

The real biological sequence alignment is hard to find
because we do not really know the correct scoring function
of nature. The scoring functions presented by scientists may
be close to the correct one, though. Thus we need to check
all the near-optimal alignments to find the real one. It is too
time consuming to check by human power. Our algorithm is
a good choice to speed up our understanding of mysterious
phenomena.

For now it is necessary to design different algorithms to
filter the near-optimal alignments with different criteria. In
the future, we would like to parameterize the problem and
design the algorithm to solve it.
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