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Abstract

The biochemical functions of proteins are deter-
mined by their structures. Thus one of the most im-
portant issues in the life science is to predict the three-
dimensional structures with protein sequences, and
then to deduce their biochemical functions. In or-
der to simplify the problems, scientists use the lattice
model to approximate the real protein structures, but
they two cannot be compared in fact. So we present
the curve fitting concept, such as B-splines, to con-
vert the lattice model and a real structure to the curves
to see the difference among them in a fair position.
Besides, the curve alignment can also be used as an-
other measurement to evaluate the similarity between
two real protein structures. We then propose an algo-
rithm to develop a protein structure prediction method-
ology based on a structure-known protein, where the
two protein sequences are extremely similar. By the
experimental results, our protein structure prediction
method performs well when we get two protein se-
quences with similarity that is not too high.
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1 Introduction

Proteins are macromolecules that perform all im-
portant tasks in organisms, such as catalysis of chem-
ical reactions. It is widely accepted that three-
dimensional structure of proteins determine their func-
tions. Traditionally, the tertiary structures have been
solved by X-ray crystallography or nuclear magnetic
resonance (NMR) spectroscopy [22, 28, 16]. How-
ever, they are often difficult to be crystallized and
time-consuming. Therefore, protein three-dimensional

�
This research work was partially supported by the National Sci-

ence Council of the Republic of China under contract NSC-90-2213-
E-110-022.

V L S G G G T G

(1)

(2) (3)

Figure 1: Protein primary, secondary and tertiary
structures.

structure prediction from the amino acid sequence is
very important in bioinformatics.

Proteins are chains of amino acid residues. A pro-
tein sequence consists of twenty different kinds of
amino acids, so called the primary structure. The sec-
ondary structure of a protein corresponds to regions of
local regularity such as α-helix and β-sheet. The ter-
tiary structure of a protein arises from the packing of
its secondary structure elements, which may be from
discrete domains within a fold, or may give rise to
autonomous folding units or modules, complete folds,
domains and modules. Every protein has a unique pri-
mary sequence specifying its tertiary structure. Figure
1 illustrates these structures.

It is believed that two protein sequences diverged
from the same ancestor show a certain degree of simi-
larity. The sequence similarity is usually used to mea-
sure the genetic distance between two proteins. Given
a sequence, another sequence can be generated by ran-
domly inserting, deleting or replacing some characters
on the first sequence. The degree of similarity of two
sequences means the number of the above operations



applied on the first sequence to become the other one.
Therefore, we obtain the similarity by aligning two se-
quences. Dynamic programming algorithms are often
used to generate the optimal pairwise alignment[2]. If
an alignment has more than 25% � 30% sequence sim-
ilarity, it is generally assumed that two sequences have
diverged from the same ancestor[17, 4]. However, the
two proteins may still diverge from the same ancestor
but they are highly different.

To determine the conformation of a given protein
sequence is called the protein folding problem, which
is one of the protein structure prediction problems.
This problem has been studied since 1950s[5, 19, 20],
but there is no satisfactory solution yet. Nowadays,
common approaches used to predict the structure of
proteins are homology modelling, fold recognition, and
ab initio[23].

Several researches have studied the protein fold-
ing problem in the lattice model and developed vari-
ous kinds of folding algorithms[12, 24] to predict real
protein conformations. However, no studies have been
done in comparing the folding conformation and the
real structure. We now propose a structure alignment
method with curve fitting to compare the conformation
generated by the folding algorithm in the lattice with
the real protein structure and an algorithm to solve the
protein prediction problem.

The rest of this paper is organized as follows.
In Section 2, we first introduce the Hydrophobic-
hydrophilic(HP) lattice model and some folding algo-
rithms are introduced. Next, we introduce the B-Spline
curve fitting. In Section 3, we present our method. In
Section 4 and 5, the experimental results and conclu-
sions are given, respectively.

2 Preliminaries

2.1 The Hydrophobic-hydrophilic Model

The hydrophobic-hydrophilic model proposed by
Dill is a lattice model[7]. In this model, the pro-
tein sequence is abstracted by hydrophobic (non-polar,
”water-hating” or ”water-disliking”) and hydrophilic
(polar, ”water-loving” or ”water-liking”) residues. Ta-
ble 2.1 shows the hydrophobic or hydrophilic property
for each of twenty amino acids. Thus it can be read as a
string over the alphabets

�
0 � 1 � where 1 represents ”H”

and 0 represents ”P”. This model is often to be referred
as the HP model, where H represents ”hydrophobic”
and P represents ”polar”. From experimental data, hy-
drophobic residues tend to form the protein core and
the polar ones tend to cover over the surface during the
folding process.
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Figure 2: A conformation in 2D HP model with energy
6.

A conformation in a HP lattice model is an embed-
ding of the protein sequence (chain of beads) in some
lattice, and it is modelled as a self-avoiding path. In a
self-avoiding path, every bead in the chain occupies a
lattice site, but no two beads occupy the same lattice
site. Two beads that are neighbors in the chain occupy
adjacent lattice sites.

The free energy of a conformation depends on the
number of non-neighboring hydrophobic amino acids
that occupy adjacent grid points in the lattice. Each
hydrophobic-hydrophobic (H-H) bond contributes one
free energy of E (E � 0), and hydrophobic-hydrophilic
(H-P) and hydrophilic-hydrophilic (P-P) bonds would
have free energy of 0. Theoretically, the native confor-
mation is the one with minimal free energy. That is, it
maximizes the number of contacts between hydropho-
bic residues. Figure 2 shows a conformation in the
2D HP model where 6 non-neighboring hydrophobic
amino acids occupy adjacent grid points. Let S denote
the abstraction of an amino acid sequence of length
n. S [i] is 1 if the ith amino acid in the sequence is
hydrophobic and 0 if it is hydrophilic. Figure 2 illus-
trates a protein sequence 10010011001001 in the 2D
HP model.

Though the HP model is quite simple, it is pow-
erful enough to capture the properties of proteins.
The protein structure prediction problem for the HP
model has been proved to be NP-complete in the
square lattice [3, 6, 9, 14, 26]. Many approxima-
tion algorithms have been developed for the HP lattice
model[1, 12, 13, 27, 18].

2.2 B-Spline Curve Fitting

The B-Spline curve had been devoted
by Lobachevsky in the nineteenth century and is one



Table 1: Twenty naturally occurring amino acids found in biological systems.

One-letter code Three-latter code Name Hydrophobic or hydrophilic(P)
1 A Ala Alanine H
2 C Cys Cysteine H
3 D Asp Aspartic Acid P
4 E Glu Glutamic Acid P
5 F Phe Phenylalanine H
6 G Gly Glycine H or P
7 H His Histidine P
8 I IlE Isoleucine H
9 K Lys Lysine P

10 L Leu Leucine H
11 M Met Methionine H
12 N Asn Asparagine P
13 P Pro Proline H
14 Q Gln Glutamine P
15 R Arg Arginine P
16 S Ser Serine P
17 T Thr Threonine P
18 V Val Valine H
19 W Trp Tryptophan H
20 Y Tyr Tyrosine H

type of spline, perhaps the most popular, in computer
graphics applications [8, 10]. A B-Spline curve is a
set of piecewise (usually cubic) polynomial segments
that pass close to a set of control points. The curve is
formed in relation to the 3D polyline joining the points
in sequence. The B-Spline Curve always starts at the
first control point and ends at the last control point, and
it is always tangent to the polyline at these end points,
but in general it does not pass through the other control
points.

The B-Spline curve is defined as follows: for given
n � 1 control points P0 � P1 � P2 ������� � Pn, we can derive a
continuous function P � v � as

P � v ��� n

∑
k � 0

PkNk � t � v �
where Nk � t � v � is a blending function, and t is the degree
of the polynomials for representing a curve segment
that is usually 3 or 4.

There are a number of possible options for the knot
positions, for example, a uniform spacing where u 	 k 
��
k. More commonly the following function is chosen

u 	 k 
�� � � 0 1 � k � t
k � t � 1 t � k � n
n � t � 2 k � n

The blending functions determine how strongly

control point Pk influences the curve at point v, which
are defined as

Nk � 1 � v ����� 1 i f u 	 k 
�� v � u 	 k � 1 

0 otherwise

Nk � t � v ��� v � u 	 k 

u 	 k � t � 1 
�� u 	 k 
 Nk � t � 1 � v �� u 	 k � t 
�� v
u 	 k � t 
�� u 	 k � 1 
 Nk � 1 � t � 1 � v �

Next we present a previous approach to find a cor-
respondence (alignment) between two curves[11, 21].
The correspondence is based on a notion of an align-
ment which treats both curves symmetrically.

Let C1 � s1 ����� x1 � s1 � � y1 � s1 ��� � s1 � 	 0 � L1 
 , and
C2 � s2 ����� x2 � s2 � � y2 � s2 ��� � s2 � 	 0 � L2 
 , denote two
curve segments, where s denotes one point, x and y
are the coordinates of each point, and L represents
the length of the projection of the curve segment on
the x-axis. Consider two curve segments C1 � A1 � B1  
and C2 � A2 � B2  of lengths ds1 and ds2, respectively. A
mapping g : 	 0 � L1 
"!#	 0 � L2 
 � g � s1 ��� s2 represents an
alignment of the two curve segments. Therefore, we
can align the two curves such that two points A1 and
A2, the tangents T1 and T2 are overlapping, as shown in
Figure 3. The cost of the alignment is the combination
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Figure 3: The cost of two curve segments C1 � A1B1

and C2 � A2B2.

of degree of points B1 and B2 and their tangents. Thus,
a measure µ on this function[21] is defined as

µ ��� ds2 � ds1 � � r � dq2 � dq1 � �
where r is a constant.

3 A Prediction Method Based on Curve
Alignment

In this section, we shall propose a heuristic algo-
rithm to solve the protein prediction problem. Given
two similar protein sequences and the structure of one
of the two sequences, we are desired to predict the
structure of the other one. Our algorithm is the com-
bination of the homology modelling method and the
folding algorithm.

It is clear that the HP lattice model and the real pro-
tein structure cannot be compared directly. In other
words, they two must be transformed into both the HP
lattice model or both the real protein structure to be
used to predict or see the difference between them. It is
difficult to have a transform like this. Thus we present
the curve fitting concept, as a medium of two types.
By making the HP lattice model and the real protein
stucture into curves, they are easy to compared with
and offer us some other candidates when we are trying
to predict the tertiary structure of a protein.

In our algorithm, we apply the B-spline curve fit-
ting in protein structure alignment because of the dif-
ficultly in comparing the conformation generated by
the folding algorithm in the lattice with the real pro-
tein structure. Using B-spline curves, we can use the
curve alignment method and easily determine which
conformation is closer. There are many kinds of spline
curves. The reasons we use B-spline curves are the
properties described in Section 2.2 and these proper-
ties are closer to real protein structures than those of
other spline curves.

Definition 1 Given two protein sequences (the master
sequence and slave sequence) and the tertiary struc-
ture information of the master sequence, the protein
structure prediction problem is to predict the tertiary
structure of the slave sequence.

Definition 2 Given two protein sequences with higher
than 30% sequence similarity, we can say that they are
homologous. Thus we may say that they evolve from
the same ancestor and hence are highly structurally
related[4].

Definition 3 The structurally conserved regions are
those sequences of residues in a structure-unknown
protein which are highly homologous with those in a
known structure.

Our prediction algorithm is as follows.

Algorithm: Homology Modelling in Folding Algorithm

Input: Two protein sequences S1 and S2, where the
structure of S2 is known and S1 is highly similar
to S2 with respect to their sequences.

Output: The backbone conformation model of S1.

Step 1: Perform sequence alignment on S1 and S2.

Step 2: Find the structurally conserved regions,
which have 50% or higher sequence similarity
and the sequence alignment score is positive.
Copy the coordinators of structurally conversed
regions, except gaps, in the template structure S2

to the target protein structure S1.

Step 3: On the lattice model, apply the folding algo-
rithm to position the residues that lose sequence
similarity.

Step 4: For each G-Region Gi, find the structure-
known proteins with 70% or higher sequence
similarity to Gi. Then, construct a segment of B-
spline curve for every four points of the folding
structure and the similar protein structures. Apply
the curve alignment between the folding structure
and the similar protein structures. Copy the co-
ordinators from the similar protein structure that
gets the highest score.

Step 5: Construct the complete protein structure
backbone model of S1.

We explain the above algorithm with the following
example step by step. Let us consider the two homol-
ogous protein sequences S1 and S2, that is, S1 and S2

are highly structurally related:



S1 � SSKCSRLKTFPQNACVYHK
S2 � SVYCSSLACSDHN

Suppose S1 is the protein whose structure we want
to predict. At step 1, we align S1 and S2 with the score
Matrix PAM-250. In the following, we use | to repre-

sent that residues are identical,
...to represent that they

are similar, and - to represent a gap.

S1 � SSKCSRLKTFPQNACVYHK

|--||
...|------||--|

...
S2 � SVYCSSL------ACSDHN

In step 2, find the structurally conserved regions:

S S K C S R L

| - - | |
... |

S V Y C S S L�

Structurally Conserved Region

K T F P Q N
- - - - - -
- - - - - -�

G � Region

A C V Y H K

| | - - |
...

A C S D H N

�

Structurally Conserved Region

Then, we copy the coordinates from the simi-
lar segments, as shown in Figure 4. Next, trans-
late the residues that lose similarity to a 0/1 string,
where 1 represents ”hydrophobic” and 0 represents
”hydrophilic” as follows.

LKTFPQNA ��� 10011001

Apply the folding algorithm to position these
residues. The folding conformation is shown in Fig-
ure 5.

Now, we obtain the coordinates of the folding
residues from the folding conformation. Apply the B-
spline curve formula to depict the global similar curve,
as shown in Figure 6.

Then, we apply the matching method introduced
in Section 2.2. Let µ be the score of curve segment
matching and d a predefined threshold. Here our score
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Figure 4: The process of cloning coordinates.
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Figure 5: The folding conformation.

B-spline Curve
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Figure 6: The B-spline curve of the folding conforma-
tion.
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Figure 7: The three given candidate proteins, where
broken lines represent the B-spline curve and thin lines
represent the real conformation.

function of the curve alignment is defined as follows:

wi � j �
�����
�����
� 2 i f 0 � µ � d � the matching is quite good �� 1 i f d � µ � 3d � the matching is good �� 1 i f 3d � µ � 6d � the matching is bad �� 2 else µ

�
6d � the matching is too bad

and a gap is inserted �
To compute the optimal structure alignment, we use
the following dynamic programming, which is also
used in the standard sequence alignment algorithm[25,
15].

A 	 i � j 
 � max � A 	 i � 1 � j 
 � A 	 i � j � 1 
 � A 	 i � 1 � j � 1 
 � wi � j �
By dynamic programming strategy, we can align

two curves. Suppose that the given candidate proteins
are shown in Figure 7. Then we get the B-spline curve
of every four points from each of the candidate pro-
teins and calculate the structure alignment matching
score. Tables 2, 3 and 4 show the alignment score ma-
trices between the folding conformation and one of the
candidate proteins, respectively. Let Xi represent the
B-spline curve composed of four residues starting at
symbol X in the ith candidate protein and X0 represent
the curve starting at X in the folding structure. For ex-
ample, T2 represents the curve segment T FPQ in can-
didate protein 2 and L0 represents the curve LKT F in
the folding conformation.

Table 2: The structure alignment score matrix between
candidate protein 1 and the folding structure.

- L0 K0 T0 F0 P0

- 0 -2 -4 -6 -8 -10
L1 -2 -1 0 -2 -4 -6
K1 -4 -1 -2 1 -1 -3
T1 -6 -3 -2 -1 0 -2
F1 -8 -5 -1 -3 0 -1
P1 -10 -7 -3 -2 -2 -1

Table 3: The structure alignment score matrix between
candidate protein 2 and the folding structure.

- L0 K0 T0 F0 P0

- 0 -2 -4 -6 -8 -10
L2 -2 -1 -3 -5 -7 -9
K2 -4 -3 -2 -4 -6 -8
T2 -6 -5 -4 -3 -5 -7
F2 -8 -7 -6 -5 -4 -6
P2 -10 -9 -8 -7 -6 -5

Table 4: The structure alignment score matrix between
candidate protein 3 and the folding structure.

- L0 K0 T0 F0 P0

- 0 -2 -4 -6 -8 -10
L3 -2 2 0 -2 -4 -6
K3 -4 0 4 2 0 -2
T3 -6 -2 2 6 4 2
F3 -8 -4 0 4 8 6
P3 -10 -6 -2 2 6 10



Table 5: The optimal structure alignment, where Ci

represents the conformation of the ith candidate pro-
tein (i=0 represents the folding structure).

Alignment Cost� C0 � C1 � L0 K0 T0 - F0 P0 -1

- |
... -

... -
- L1 K1 T1 F1 P1� C0 � C2 � L0 K0 T0 F0 P0 -5
- - - - -

L2 K2 T2 F2 P2� C0 � C3 � L0K0T0F0P0 10
| | | | |

L3K3T3F3P3
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Figure 8: The final conformation of the structure-
unknown protein S1.

We can find the candidate protein with the highest
score in the structure alignment. Table 5 shows the op-
timal structure alignments with the three candidates.
Note that we get two pairs of similar regions (K0T0,
L1K1) and (F0, F1) after transformation when compar-
ing two structures C0 and C1.

Finally, we copy the coordinates from the selected
protein to form the backbone conformation. Figure 8
shows the final conformation.

4 Experiment Results

In this section, we will show our experimental re-
sults and analyze the performance of our algorithm.
Our algorithm is implemented on PC with AMD
Duron processor 1000 MHZ and 256 MB RAM. 90%
sequence similarity means that given two sequences,
one can be replaced by randomly inserting, deleting

or replacing 10% characters on the other sequence.
Our test data include sequences with 30% similarity
through 100% similarity of real biological sequences.

We compare the results of the protein prediction
methods with folding algorithms and the algorithms
without folding algorithms. There are two sequences
in each test case. One is the template sequence, de-
noted as A, with a known structure. The other is the
target sequence, denoted as B, without knowing its
structure. In our test data, we get the protein structure
files from PDB (http://www.rcsb.org/pdb/index.html).
Then we use these proteins to be the structure-
unknown ones and compare the experimental results
with their original real structures from the PDB file.
Table 6 shows the experimental results of comparing
protein 5CPV and other protein sequences with differ-
ent sequence similarity.

In our experiment, the prediction method with fold-
ing algorithm is referred to our algorithm in the previ-
ous section. The method without folding algorithm is
described as follows:

Step 1. Search homologous proteins and align the se-
quences.

Step 2. Identify structurally conserved and struc-
turally variable regions. Generate coordinates
from template residues to the target protein.

Step 3. Arrange those region that are not structurally
conserved from database. If the template we
found are 100% sequence similarity related, then
copy these coordinates from the first template.

Structure similarity represents the RMSD value
of the real conformation of the target and template.
ORMSD is the RMSD value of the predicting confor-
mation formed without folding algorithm and the real
target conformation. The C score we use in Table 6
is the percentage of the structure similarity, which is
defined as

C score � the CFAS
the upper bound o f the optimal CFAS

where CFAS means the curve fitting alignment score.
If we get an optimal structure alignment, the upper

bound of the score is 2 � � l � 3 � , where l is the length
of the target protein sequence.

Take protein sequence 5CPV for example. The
length of the protein sequence is 109. So the up-
per bound of the optimal curve fitting alignment score
would be � 109 � 3 ��� 2 � 212. Thus if we the get a
perfect template structure, the C score of this optimal
structure will be 1.

For structure similarity and ORMSD of cases 1-3 in
Table 6, there is no improvement because of the high



Table 6: The experimental results of protein prediction algorithms with folding and without folding methods.
Structure similarity: the RMSD value of the real conformation of the target and template. C: ORMSD(Å) the
RMSD value of the conformation formed without folding algorithm. D: FRMSD(Å), the RMSD value of the
conformation formed with folding algorithm. E: CNF value, the C score of the conformation formed without
folding algorithm. F: CWF value, the C score of the conformation formed with folding algorithm.

Target Template Length Sequence Structure C D E F
similarity similarity

1 5CPV 1CDP 109 100.0% 0.2 0.2 0.2 1.000 1.000
2 5CPV 1B8C 108 97.2% 1.4 1.4 1.4 0.978 0.978
3 5CPV 1BU3 109 82.7% 0.6 0.6 0.6 0.901 0.915
4 5CPV 1A75 108 80.2% 1.0 0.8 1.0 0.842 0.889
5 5CPV 2PVB 107 76.4% 0.6 0.6 1.0 0.892 0.909
6 5CPV 2PAS 110 61.7% 1.2 1.2 1.2 0.62 0.778
7 v 5CPV 5PAL 109 50.5% 1.7 1.6 1.2 0.534 0.872
8 v 5CPV 1C7V 81 33.9% 3.3 3.2 2.4 0.487 0.512
9 v 5CPV 1C7W 81 33.8% 3.4 3.2 2.4 0.345 0.519

10 v 5CPV 1BOD 74 31.2% 3.9 3.8 2.4 0.21 0.504

sequence similarity between the template and the tar-
get proteins. In other cases, the algorithm with folding
method gets some improvement.

In table 6, we can find that in cases 7, 8, 9 and
10, the prediction method with folding algorithms pre-
forms better than those without folding algorithms.
These protein sequences have lower sequence similar-
ity and higher mismatching rate, that is, these folding
sequences are long enough to be applied by the folding
algorithm. Besides, if two sequences are very similar
with the matched amino acids, the algorithm with fold-
ing do not have obvious improvement, such as cases 1,
2 and 3. In other cases, the algorithm with folding does
not perform well. These cases have lower sequence
similarity but the folding sequences are too short to
perform the effects of the folding algorithms.

In Table 6, template protein sequences with high
sequence similarity seem to get a better solution. See
column sequence similarity and structural similarity.
However, Table 7 illustrates the other condition that
supports our theory. High sequence similarity does not
always represent high structural similarity. Note that
for cases 6-10, the template protein sequences with
lower sequence similarity works better than those with
higher sequence similarity. For example, the sequence
similarity of case 1 is the highest one but the structural
similarity is the worst one. That is, template protein
sequences with higher sequence similarity would not
always get a better solution. So, we should not choose
the template only with high sequence similarity when
predicting the target protein.

Similarly, the prediction method with folding algo-
rithm also preforms well when these protein sequences

have lower sequence similarity in Table 7, such as
cases 6-10. Among all cases, we can observe that
case 9 gets the best solution. That means, when pre-
dicting the structure of protein 1LIN, templates with
high sequence similarity are not the best choices and
if we predict protein structure with lower similarity
template, our protein structure prediction method with
folding algorithm works better than those are not.

Note that the RMSD value means the distance dif-
ference between two proteins and the C score means
the percentage of the structure similarity. We can see
that our protein prediction methods with folding algo-
rithms performs better than that without folding algo-
rithms in C score. It is because that the folding algo-
rithm chooses the structures with similar shape.

Table 8 shows the experimental results of sev-
eral RNase A amino acid sequences. In previous re-
searches, most RNase A’s show about 50% sequence
homology. Since our prediction method with fold-
ing algorithm performs well on the protein sequences
with lower similarity, we test these RNase A protein
sequences. In our test, when the similarity is below
a threshold, the folding algorithm actually performs
well.

We can also apply the curve fitting structure align-
ment to measure the four folding algorithms. Given
a protein with its structure, we are trying to use the
various folding algorithms to predict its conformation
and compare with its real structure. The experimental
results are shown in Table 9. In cases 1 and 2, the pro-
teins have the shorter length. We can see that the fold-
ing algorithm performs similarly except that the U-fold
is worse. With the length of protein sequences getting



Table 7: The experimental results of protein prediction methods with folding algorithms and the algorithms without
folding algorithms.C: ORMSD(Å) the RMSD value of the conformation formed without folding algorithm. D:
FRMSD(Å), the RMSD value of the conformation formed with folding algorithm. E: CNF value, the C score of
the conformation formed without folding algorithm. F: CWF value, the C score of the conformation formed with
folding algorithm.

Target Template Length Sequence Structure C D E F
similarity similarity

1 1LIN 1CFD 148 100.0% 4.4 4.4 4.4 0.201 0.213
2 1LIN 2BBN 148 98.6% 3.5 3.5 3.5 0.346 0.368
3 1LIN 1IQ5 149 89.3% 3.7 3.6 3.5 0.343 0.369
4 1LIN 1CMF 73 75.0% 3.6 3.5 3.6 0.341 0.364
5 1LIN 1TNW 162 68.4% 2.8 2.6 2.8 0.438 0.556
6 v 1LIN 1EW7 161 66.7% 3.2 3.2 2.9 0.302 0.381
7 v 1LIN 1DTL 161 52.9% 2.0 1.9 1.6 0.532 0.753
8 v 1LIN 1CMG 73 44.8% 1.6 1.4 1.2 0.709 0.802
9 v 1LIN 1AVJ 161 32.9% 1.4 1.2 1.0 0.820 0.899

10 v 1LIN 1PVB 108 30.7% 3.2 2.9 2.3 0.496 0.504

Table 8: The experimental results of protein prediction methods with folding algorithms and the algorithms without
folding algorithms in several RNase A amino acid sequences.

Target Length Template Length Sequence similarity CNF value CWF value
1 1A2W 124 1HI5 134 38.0% 0.581 0.625
2 1ANG 123 1A2W 124 35.1% 0.63 0.693
3 1DYT 133 1HI5 134 62.4% 0.671 0.679
4 1DYT 133 1ANG 123 31.1% 0.60 0.72
5 1RCN 124 1HI5 134 37.6% 0.43 0.671
6 1RCN 124 1ANG 123 33.3% 0.35 0.55
7 1F0V 124 1HI5 134 36.2% 0.21 0.42
8 1F0V 124 1ANG 123 32.0% 0.52 0.52
9 1RBW 124 1RNF 120 40.7% 0.51 0.56
10 1RBW 124 1HI5 134 37.6% 0.32 0.35



Table 9: Comparison of different folding methods.

Protein Length Folding Type Score
1 1IG5 75 U-fold 32

C-fold 51
S-fold 53

GA-approach 52
2 1D3Z 76 U-fold 43

C-fold 69
S-fold 71

GA-approach 75
3 4FXC 98 U-fold 54

C-fold 85
S-fold 77

GA-approach 96
4 5CPV 109 U-fold 98

C-fold 115
S-fold 147

GA-approach 165
5 1AZU 128 U-fold 109

C-fold 121
S-fold 157

GA-approach 195

longer, the GA approach performs better than others,
and the U-fold still gets the worst performance. As the
length of proteins gets longer and longer, it is obvious
that the GA approach gets better score.

5 Conclusion

In this paper, we first give a brief survey on the
algorithms for the protein structure prediction prob-
lem. Then, we propose a heuristic algorithm to predict
the structure of a protein. Our algorithm consists of
the homology modeling method and the folding algo-
rithms. For comparing the folding model and the real
protein structure, we use the curve fitting method as
our structure alignment method. The curve alignment
can also be used to evaluate the degree of similarity of
two structures. By our experimental results, our pro-
tein structure prediction method performs well when
the two protein sequences are not very similar.

The C score we use in the structure alignment is a
new measurement, which is different from the RMSD
measurement. The RMSD computes the distances over
all atoms, while the C score measures the percentage
of the structure similarity. And the curve alignment
can also point out which region is ”well-predicted”.

In previous researches, the only criterion to deter-
mine the folding algorithm is guaranteed performance

ratio. This criterion judges the quality of each folding
algorithm by evaluating their energy but not the simi-
larity of their structures. We propose a structure align-
ment method based on curve fitting that judges which
conformation generated by various folding algorithms
is closer to the true protein structure. Thus, the struc-
ture alignment with curve fitting is a useful method for
evaluating the accuracy of the HP model conformation.

References

[1] R. Agarwala, S. Batzoglou, and V. Dancik,
“Local rules for protein folding on a triangu-
lar lattice and generalized hydrophobicity in the
HP model,” Journal of Computational Biology,
Vol. 4, No. 3, pp. 275–296, 1997.

[2] T. Akutsu and H. Arimura, “On approximation
algorithms for local multiple alignment,” Pro-
ceedings of the Fourth Annual International Con-
ference on Computational Molecular Biology,
Tokyo, Japan, pp. 1–7, 2000.

[3] B. Berger and T. Leight, “Protein folding in
the hydrophobic-hydrophilic (HP) model is NP-
complete.,” Journal of Computational Biology,
Vol. 5, No. 1, pp. 27–40, 1998.

[4] T. L. Blundell, B. L. Sibanda, M. J. E. Stern-
berg, and J. M. Thornton, “Knowledge-based
prediction of protein structures and the design
of novel molecules.,” Nature, Vol. 326, pp. 347–
352, 1987.

[5] T. Creighton, “The protein folding problem,” Sci-
ence, Vol. 240, pp. 267– 344, 1988.

[6] P. Crescenzi, D. Goldman, C. Capadimitriou,
A. Piccolboni, and M. Yannakakis, “On the com-
plexity of protein folding,” Journal of Computa-
tional Biology, Vol. 5, No. 1, pp. 409–422, 1998.

[7] K. Dill, “Theory for the folding and stabil-
ity of globular proteins,” Biochemistry, Vol. 24,
p. 1501, 1985.

[8] G. Farin, Curves and Surfaces for Computer
Aided Geometric Design : A Practical Guide.
Boston: Academic Press, second ed., 1990.

[9] A. Fraenkel, “Complexity of protein folding,”
Bulletin of Mathematical Biology, pp. 1199–
1210, 1993.

[10] C. F. Gerald and P. O. Wheatley, Applied Nu-
merical Analysis. Addison Wesley Publishing,
fourth ed., 1990.



[11] H. Hagen, Curves and Surfaces Design. SIAM
Activity Group on Geometric Design, 1992.

[12] W. Hart and S. Istrail, “Fast protein folding in
the hydrophobic-hydrophilic model within three-
eights of optimal,” Journal of Computational Bi-
ology, Vol. 3, No. 1, pp. 53–96, 1996.

[13] W. Hart and S. Istrail, “Lattice and off-lattice
side chain models of protein folding: Linear time
structure prediction better than 86% of optimal,”
Journal of Computational Biology, Vol. 4, No. 3,
pp. 241–259, 1997.

[14] W. Hart and S. Istrail, “Robust proofs of NP-
hardness for protein folding: general lattices and
energy potentials,” Journal of Computational Bi-
ology, Vol. 4, No. 1, pp. 1–22, 1997.

[15] L. Holm and C. Sander, “3-D lookup: fast pro-
tein structure database seaches at 90 reliability.,”
Proceedings of 3rd International Conference on
Intelligent Systems for Molecular Biology., Cam-
bridge, UK., pp. 179–187, 1995.

[16] R. C. T. Lee, “Computational biol-
ogy.” http://www.csie.ncnu.edu.tw/, Department
of Computer Science and Information Engineer-
ing, National Chi-Nan University, Taiwan, 2001.

[17] R. Lewin, “When does homology mean some-
thing else?,” Science, Vol. 237, p. 1570, 1987.

[18] G. Mauri, A. Piccolboni, and G. Pavesi, “Ap-
proximation algorithms for protein folding pre-
diction.,” Proceedings of the 10th Annual Sym-
posium on Discrete Algorithms (SODA), San An-
tonio, USA, pp. 945–946, 1999.

[19] F. Richards, “The protein folding problem,” Sci-
entific American, Vol. 264, No. 1, pp. 54–63,
1991.

[20] A. Sali, E. Shakhnovich, and M. Karplus, “How
does a protein fold?,” Nature, Vol. 369, pp. 248–
251, 1994.

[21] T. B. Sebastian, P. N. Kelin, and B. Kimia,
“Alignment-based recognition of shape out-
lines.,” Proceedings of 4th International Work-
shop on Visual Form, Capri, Italy, pp. 606–618,
2001.

[22] J. Setubal and J. Meidanis, Introduction to Com-
putational Molecular Biology. PWS Publishing
Company, Boston, second ed., 1997.

[23] N. Siew and D. Fischer, “Convergent evolution of
protein structure prediction and computer chess
tournaments:CASP, Kasparov, and CAFASP.,”
IBM System Journal, Vol. 40, No. 2, pp. 410–
425, 2001.

[24] C. N. Storm and R. B. Lyngso, “Prediction of
protein structures using simple exact models..”
Technical Report. University of Aarhus, Den-
mark, 1996.

[25] W. R. Taylor and C. A. Orengo, “Protein struc-
ture alignment.,” Journal of Molecular Biology,
Vol. 208, pp. 1–22, 1989.

[26] R. Unger and J. Moult, “Finding the lowest free
energy conformation of a protein is NP-hard
problem: Proof and implications,” Bulletin of
Mathematical Biology, Vol. 55, No. 6, pp. 1183–
1198, 1993.

[27] R. Unger and J. Moult, “Genetic algorithms for
protein folding simulations,” Journal of Molecu-
lar Biology, Vol. 231, No. 1, pp. 75–81, 1993.

[28] M. Waterman, Introduction to Computational Bi-
ology: Maps, Sequences and Genomes. Chap-
man and Hall, London: CRC Press, 1995.


