
Solving the Longest Common Subsequence Problem with the
Lost Score Scheme

Kuo-Tsung Tsenga and Chang-Biau Yangb∗

aDepartment of Shipping and Transportation Management
National Kaohsiung Marine University, Kaohsiung, Taiwan

tsengkt@nkmu.edu.tw

bDepartment of Computer Science and Engineering
National Sun Yat-sen University, Kaohsiung, Taiwan

cbyang@cse.nsysu.edu.tw

Abstract

Given two sequences A and B of lengths m and
n respectively, the longest common subsequence
(LCS) problem is to find the common subsequence
of both A and B with the maximum length. Tra-
ditionally, an LCS lattice is built, where LCSi,j

represents the LCS length of A1..i and B1..j. In
this paper, we present a novel concept, the lost
score matrix (LSM), for solving the LCS problem.
LSMi,j is defined as the score that has been lost
for calculating the LCS length of A1..i and B1..j.
Though the time complexity of our algorithm is
O(mn) in the worst case, our computation time is
reduced if A and B are very similar. Besides, we
can filter out quickly those sequences which are not
so similar.

1 Introduction

It is crucial to measure the similarity of two se-
quences in many applications, such as voice recog-
nition, pattern matching, plagiarism detection and
computational biology. The longest common sub-
sequence [2–7, 11, 12] problem and the edit dis-
tance [1, 10] problem are often applied to the
similarity measurement of two sequences and they
have been extensively studied for several decades.

Given two sequences A and B, with lengths
m and n respectively, where m ≤ n, the longest
common subsequence (LCS) problem is to find the
common subsequence of both A and B with the
maximum length. Here, a subsequence of sequence

∗Corresponding author (Chang-Biau Yang).

S is a sequence that can be obtained by deleting
arbitrary number of elements at arbitrary posi-
tions of S.

Finding the minimum number of editing op-
erations (insertion, deletion and substitution) to
transform sequence A into B is defined as the edit
distance problem [1, 10, 13]. If the cost of one
insertion or one deletion is 1, and the cost of one
substitution is 2 (viewed as one insertion plus one
deletion), then this special edit distance of two se-
quences A and B can be obtained by their LCS
length with the formula E = m+n−2L, where E
denotes the edit distance and L denotes the LCS
length.

To solve the alignment problem of DNA se-
quences or protein sequences, Needleman and
Wunsch first defined the LCS problem, and they
designed a primitive algorithm for solving it [9].
The time complexity of the primitive algorithm is
O(mn(m+n)). Then several improved algorithms
were proposed. The most famous dynamic ap-
proach for solving the LCS problem was proposed
by Hirschberg in 1975 [4]. The time complexity is
O(mn). Besides, Hirschberg also proposed a di-
vide and conquer approach with O(mn) time and
O(m + n) space. To reduce the computational
time, Hunt and Szymanski collected the matching
pairs of the two input sequences and then invoked
the algorithm for solving the longest increasing
subsequence problem [6]. The time complexity
is O((R + n) log n)), where R denotes the num-
ber of matching pairs. Since only matching pairs
are considered, this algorithm is more efficient if
R is small. On the other hand, if the two input
sequences are very similar, then R becomes large

41

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

and hence the efficiency decays dramatically.
To calculate the LCS of two similar sequences,

Nakatsu et al. proposed an algorithm with time
complexity O(n(m− L)) [8], where L denotes the
LCS length. As we can see, when the input se-
quences are similar, L will be large and thus the
required time becomes little. If we know in ad-
vance that the two input sequences are similar,
the algorithm can run efficiently. However, if the
sequence similarity is low, the algorithm will be-
come inefficient.

Imagine the scenario that among a set of se-
quences, our goal is to find similar sequence pairs.
In this scenario, we have no idea about the se-
quence similarity in advance. The LCS algorithm
of Nakatsu et al. cannot be applied well since the
similarity may be high, and may also be low. It
is a dilemma for deciding whether the algorithm
of Nakatsu et al. is used or not. Inspired by this
scenario, in this paper, we propose a different idea
for solving the LCS problem. Traditionally, the
LCS algorithms are based on the concept that the
gained score is accumulated gradually, and finally
the gained score represents the similarity. On the
contrary, we calculate the lost score of the two in-
put sequences. Initially, the lost score is set to
zero. And, the lost score is also increased gradu-
ally during the execution of the algorithm. With
this idea, we can preset a threshold for determin-
ing whether two sequences are similar or dissim-
ilar. When the lost score exceeds the threshold,
the two sequences will become dissimilar and the
algorithm terminates. In other words, once the
algorithm decides that the two sequences are dis-
similar, it no longer calculates the final LCS length
and thus the computation time can be reduced.
Besides, if the two sequences are similar, the LCS
length can be found more quickly. Note that time
complexity of our algorithm is still O(mn) in the
worst case.

The rest organization of this paper is as follows.
In Section 2, some preliminaries are given. In Sec-
tion 3, we present our lost score scheme for solving
the LCS problem. Finally, we give our conclusions
in Section 4.

2 Preliminaries

A sequence S is denoted by s1s2s3 . . . sl, and
|S| represents its length (|S| = l). si denotes
the ith element of S. In addition, let Si..j =
sisi+1si+2 . . . sj denote a substring from the ith
element to the jth element of S.

Given two sequences A = a1a2a3 . . . am and
B = b1b2b3 . . . bn of lengths m and n, respectively,
where m ≤ n. Let LCSi,j represent the LCS
length of A1..i (1 ≤ i ≤ m) and B1..j (1 ≤ j ≤ n).
The dynamic programming approach for calculat-
ing the LCS length [4] is given in Equation 1.

Boundry Conditions
LCSi,j = 0, if i = 0 or j = 0

If ai = bj
LCSi,j = LCSi−1,j−1 + 1

Otherwise

LCSi,j = max

{
LCSi,j−1

LCSi−1,j

(1)

Table 1 shows an example of the LCS lattice
for computing the LCS length of sequences A =
cecedec and B = fecdfddec.

Table 1: The LCS lattice of sequences A =
cacadac and B = bacdbddac.

0 1 2 3 4 5 6 7 8 9
f e c d f d d e c

0 0 0 0 0 0 0 0 0 0 0
1 c 0 0 0 1 1 1 1 1 1 1
2 e 0 0 1 1 1 1 1 1 2 2
3 c 0 0 1 2 2 2 2 2 2 3
4 e 0 0 1 2 2 2 2 2 3 3
5 d 0 0 1 2 3 3 3 3 3 3
6 e 0 0 1 2 3 3 3 3 4 4
7 c 0 0 1 2 3 3 3 3 4 5

Nakatsu et al. proposed an algorithm with time
complexity O(n(m−L)) for solving the LCS prob-
lem [8], where L denotes the LCS length of A and
B. In their paper, the closer m and L are, the
quicker their algorithm will do. In other words, if
two given sequences are very similar, the L will be
determined quickly.

We use an example to illustrate the algorithm
of Nakatsu et al. Suppose sequences A = cecedec
and B = fecdfddec, where m = 7 and n = 9. A
simplified result of Nakatsu’s algorithm is shown
in Table 2. Here, we have modified their algorithm
for ease of comparing with the traditional lattice.

The yth element of round x with value z
(Mx,y = z) in Table 2 represents that the LCS
length of A1..x+y−1 and B1..z is y, where B1..z is

42

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

the shortest prefix of B satisfying that. For exam-
ple, M1,3 = 9 since B1..9 = fecdfddec is the short-
est prefix of B that has a common subsequence of
length 3 with A1..1+3−1 = cec. As another exam-
ple, M2,3 = 8 since B1..8 = fecdfdde is the short-
est prefix of B that has a common subsequence of
length 3 with A1..2+3−1 = cece.

It is easy to compute round 1 in Table 2. First,
a1 = c, so the algorithm finds the first c in B which
is b3. Second, a2 = e, so the algorithm finds the
first e after b3 in B which is b8. Then, a3 = c, the
3rd element in round 1 is b9. Now it is impossible
to go any further. Thus, round 1 terminates.

Round 2 begins with a2 = e. The algorithm
finds the first e in B which is b2, and 2 is smaller
than M1,1 = 3, so M2,1 = 2.

Round 3 starts with a3 = c. The first c in B is
b3, but 3 is larger than thanM2,1 = 2, soM3,1 = 2.
The final round (round 3) in Table 2 is 2, 3, 4, 8, 9,
which means that b2b3b4b8b9 = ecdec is the LCS
of A and B.

Table 2: A simplified result of sequences A =
cecedec and B = fecdfddec by using the algo-
rithm of Nakatsu et al.

round 1 2 3 4 5 (max length)
1 3 8 9
2 2 3 8
3 2 3 4 8 9

3 Lost Score Matrix

In this section, we propose the lost score ma-
trix (LSM) to denote the score that has been lost
at position (i, j) of the lattice for calculating the
LCS length of sequences A and B. It is clear that
the possible maximum LCS length of A and B at
position (i, j) is LCSi,j +min(m− i, n− j). Here,
LCSi,j means the accumulated LCS length and
min(m − i, n − j) means the possible maximum
length we may get in the future. Accordingly, the
definition of LSM of A1..i and B1..j , denoted as
LSMi,j , is given in Equation 2.

LSMi,j = m− LCSi,j −min(m− i, n− j), (2)

where |A| = m, |B| = n and m ≤ n.
By the above definition, we illustrate an exam-

ple of LSM as shown in Table 3, which uses the
same example as Table 1.

Table 3: The LSM of sequences A = cecedec and
B = fecdfddec.

0 1 2 3 4 5 6 7 8 9
f e c d f d d e c

0 0 0 0 1 2 3 4 5 6 7
1 c 1 1 1 0 1 2 3 4 5 6
2 e 2 2 1 1 1 2 3 4 4 5
3 c 3 3 2 1 1 1 2 3 4 4
4 e 4 4 3 2 2 2 2 3 3 4
5 d 5 5 4 3 2 2 2 2 3 4
6 e 6 6 5 4 3 3 3 3 2 3
7 c 7 7 6 5 4 4 4 4 3 2

Though the definition of LSM is based on the
LCS length, we invoke dynamic programming to
compute LSM directly, without the LCS informa-
tion. ”The procedure for calculating the LSMi,j

is given as follows.

Boundry Conditions
LSMi,0 = i, 0 ≤ i ≤ m
LSM0,j = max(0, j − n+m), 1 ≤ j ≤ n

If ai = bj
LSMi,j = LSMi−1,j−1

Otherwise
X = (m− i)− (n− j)

LSMi,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

{
LSMi,j−1

LSMi−1,j + 1
if X < 0

min

{
LSMi,j−1

LSMi−1,j
if X = 0

min

{
LSMi,j−1 + 1
LSMi−1,j

if X > 0

(3)
The correctness is given in the following theo-

rem.

Theorem 1. Equation 3 correctly calculates the
LSM defined by Equation 2.

Proof. With Equations 1 and 2, we have following.

(i) Boundary Conditions
LCSi,j = 0 when j = 0, and min(m− i, n) = m− i
because m ≤ n, 0 ≤ i ≤ m. We have
LSMi,0 = m− 0−min(m− i, n)
= m− 0− (m− i) = i, 0 ≤ i ≤ m.

43

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

LCSi,j = 0 when i = 0.

min(m,n− j) =

{
m 0 ≤ j ≤ n−m
n− j n−m+ 1 ≤ j ≤ n

LSM0,j = m− 0−min(m,n− j)
= max(0, j − n+m), 1 ≤ j ≤ n.

(ii) If ai = bj
LCSi,j = LCSi−1,j−1 + 1.
LCSi−1,j−1

= m−LSMi−1,j−1−min(m− (i−1), n− (j−1)).
LSMi,j = m−(LCSi−1,j−1+1)−min(m−i, n−j)
= m − (m − LSMi−1,j−1 − min(m − (i − 1), n −
(j − 1)) + 1)−min(m− i, n− j)
= LSMi−1,j−1.

(iii) Otherwise
LSMi,j

= m−max

{
LCSi,j−1

LCSi−1,j
−min(m− i, n− j)

= min

⎧⎪⎪⎨
⎪⎪⎩

LSMi,j−1 +

{
0 if m− i ≤ n− j
1 if m− i > n− j

LSMi−1,j +

{
0 if m− i ≥ n− j
1 if m− i < n− j

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

{
LSMi,j−1

LSMi−1,j + 1
if m− i < n− j

min

{
LSMi,j−1

LSMi−1,j
if m− i = n− j

min

{
LSMi,j−1 + 1
LSMi−1,j

if m− i > n− j

Therefore, this theorem holds.
�

The traditional order for calculating the LCS
lattice usually uses the row-major order or the
column-major order. If we follow the traditional
order, we have to compute the whole LSM. Ob-
serving the values in LSM of Table 3, one can find
that the upper right part and the lower left need
not be calculated, since the lost scores in these
parts are too large to get the optimal LCS score.
Thus, we can use the lost score order (LSO) to
compute the elements in LSM. In this order, the
lost scores are computed with the order from 0 to
m.

By examining Equation 3, there is one fact that
elements of value k in LSM can only be derived
from the elements of value k− 1 or k, 1 ≤ k ≤ m.
Since the elements of value 0 can only be derived
from those elements of value 0, and elements of
value 1 can only be derived by elements of value 0
or 1 and so on, it is clear to see that LSO is right.

Our algorithm for computing LSMm,n with
LSO is shown in Algorithm 1. Table 4 shows the

LSM calculation of sequences A = cacadac and
B = bacdbddac with LSO. Obviously, the higher
similarity of sequences A and B, the quicker Al-
gorithm 1 will be.

Table 4: The LSM with LSO of sequences A =
cecedec and B = fecdfddec. Elements with ques-
tion marks mean that the answer LSMm,n has
been obtained before those elements were com-
puted.

0 1 2 3 4 5 6 7 8 9
f e c d f d d e c

0 0 0 0 1 2 3 4 5 6 7
1 c 1 1 1 0 1 2 ? ? ? ?
2 e 2 2 1 1 1 2 3 ? ? ?
3 c 3 3 2 1 1 1 2 ? ? ?
4 e 4 ? ? 2 2 2 2 3 ? ?
5 d 5 ? ? ? 2 2 2 2 ? ?
6 e 6 ? ? ? ? 3 3 3 2 ?
7 c 7 ? ? ? ? ? ? ? ? 2

4 Conclusion

In this paper, we propose a novel scheme, the
lost score matrix, for solving the LCS problem.
Though the improvement of time complexity may
not be much, it is practical if sequences A and B
are very similar, or if we desire to filter out those
sequences which are not so similar. It should do
a good job in plagiarism detection if we set lost
score k as our detecting threshold. The proposed
algorithm can be easily modified to stop when the
lost score is greater than k, which means that it is
not a case of plagiarism.

The idea of the lost score is novel, however, the
required computation time is not reduced so much.
This is because the decision of the lost score order
is heavy overhead. We are working on the decision
scheme. In addition, we are also studying on the
scheme that only matching pairs are calculated.

References

[1] H.-Y. Ann, C.-B. Yang, Y.-H. Peng, and B.-
C. Liaw, “Efficient algorithms for the block
edit problems,” Information and Computa-
tion, Vol. 208(3), pp. 221–229, 2010.

[2] H.-Y. Ann, C.-B. Yang, C.-T. Tseng, and
C.-Y. Hor, “A fast and simple algorithm for

44

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

Algorithm 1 Computing LSMm,n with LSO

Initiation:
for i = 0→ m do LSMi,0 = i
end for
for j = 1→ n do LSM0,j = max(0, j − n+m)
end for

k = 0, R = 0
while LSMm,n is unknown. do

l=Index of leftmost element of value k in row R
r=Index of rightmost element of value k in row R
for c = l→ r do

if LSMc+1,R+1 is unknown, then compute LSMc+1,R+1

end if
end for

if there exists any element of value k in row R+ 1 then
R = R+ 1 // calculate the next row

else
R = 0
k = k + 1 // calculate the next value

end if
end while

computing the longest common subsequence
of run-length encoded strings,” Information
Processing Letters, Vol. 108, pp. 360–364,
2008.

[3] H.-Y. Ann, C.-B. Yang, C.-T. Tseng, and
C.-Y. Hor, “Fast algorithms for comput-
ing the constrained lcs of run-length en-
coded strings,” Theoretical Computer Sci-
ence, Vol. 432, pp. 1–9, 2012.

[4] D. S. Hirschberg, “A linear space algo-
rithm for computing maximal common sub-
sequences,” Communications of the ACM,
Vol. 18, pp. 341–343, 1975.

[5] K.-S. Huang, C.-B. Yang, K.-T. Tseng, H.-Y.
Ann, and Y.-H. Peng, “Efficient algorithms
for finding interleaving relationship between
sequences,” Information Processing Letters,
Vol. 105(5), pp. 188–193, 2008.

[6] J. W. Hunt and T. G. Szymanski, “A fast al-
gorithm for computing longest common sub-
sequences,” Communications of the ACM,
Vol. 20(5), pp. 350–353, 1977.

[7] C. S. Iliopoulos and M. S. Rahman, “Algo-
rithms for computing variants of the longest
common subsequence problem,” Theoretical

Computer Science, Vol. 395, pp. 255–267,
2008.

[8] N. Nakatsu, Y. Kambayashi, and S. Yajima,
“A longest common subsequence algorithm
suitable for similar text strings,” Acta Infor-
matica, Vol. 18, No. 2, pp. 171–179, 1982.

[9] S. B. Needleman and C. D. Wunsch, “A gen-
eral method applicable to the search for simi-
larities in the amino acid sequence of two pro-
teins,” Journal of Molecular Biology, Vol. 48,
pp. 443–453, 1970.

[10] M. Pawlik and N. Augsten, “RTED: a robust
algorithm for the tree edit distance,” Proceed-
ings of the VLDB Endowment, Vol. 5, No. 4,
pp. 334–345, 2011.

[11] Y.-H. Peng, C.-B. Yang, K.-S. Huang, C.-
T. Tseng, and C.-Y. Hor, “Efficient sparse
dynamic programming for the merged LCS
problem with block constraints,” Interna-
tional Journal of Innovative Computing, In-
formation and Control, Vol. 6, pp. 1935–1947,
2010.

[12] C.-T. Tseng, C.-B. Yang, and H.-Y. Ann,
“Efficient algorithms for the longest common
subsequence problem with sequential sub-

45

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

string constraints,” Journal of Complexity,
Vol. 29, pp. 44–52, 2013.

[13] R. Wagner and M. Fischer, “The string-to-
string correction problem,” Journal of the
ACM, Vol. 21, No. 1, pp. 168–173, 1974.

46

The 32nd Workshop on Combinatorial Mathematics and Computation Theory

