
The Better Alignment among Output Alignments

Kuo-Tsung Tseng, Chang-Biau Yang*, Kuo-Si Huang

Department of Computer Science and Engineering,

National Sun Yat-sen University

Kaohsiung 80424, Taiwan

cbyang@cse.nsysu.edu.tw

Received 24 August 2007; Accepted 22 September 2007

Abstract. In nowaday molecular biology, the biosequence alignment is one of the most fundamental tech-

niques. It can be mapped into the longest common subsequence problem, which can be solved in O(n1n2)

time with the dynamic programming technique, where n1 and n2 are the lengths of the two biosequences. In

fact, the reasonability of an alignment of two biosequences depends on the scoring function used by the algo-

rithm. Scientists have presented many scoring functions to measure the goodness of the alignments in differ-

ent criteria, such as the affine gap penalty, and score matrices like PAMs, Blosums, Gonnets. All of these

scoring functions are based on the same core, the dynamic programming. Once the optimal alignment score is

found, tracing back the alignment lattice, which is produced during the dynamic programming, will obtain the

alignment of the optimal score. Unfortunately, the optimal alignment may not be unique in most cases and the

most biologically meaningful alignment may not be an optimal alignment. In this paper, we present some

mathematical scoring criteria that should help in finding the better, according to biological considerations,

alignment among output (optimal) alignments of the original LCS algorithm and illustrate our algorithms to

solve them. Our algorithms give not only the alignment of the optimal score but also more biologically mean-

ingful without increasing the computing complexity of the original algorithm.

Keywords: Bioinformatics, Computational Biology, Longest Common Subsequence, Biosequence

Alignment,

1 Introduction

One of the most important problems that biologists desire to solve is the biosequence alignment problem, on

which there is plenty of research [1-5]. The problem is given two biosequences and its goal is to obtain the opti-

mal score based on some predefined scoring criteria. A biosequence is a string consisting of characters chosen

from a set of alphabets Σ, where Σ contains the 4 nucleotides {A, T, C, G} in DNA sequences, {A, U, C, G} in

RNA sequences, and the 20 amino acids {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V} in protein

sequences. Gaps in an alignment are represented by the dash symbols (-). The biosequence alignment problem

was mapped into the longest common subsequence (LCS) problem, which is a well-studied problem in algorithms

[6-10] by computer scientists.

The biosequence alignment problem can be used to judge similarities and differences between two biose-

quences that are usually taken as the selecting criteria of the prediction templates when 3D protein structures

(tertiary structures) are to be predicted. It is important to select good templates to predict 3D protein structures in

homology modeling [11-13]. The better templates produce the more accurate prediction results.

The biosequence alignment problem can be done efficiently in O(n1n2) time with the dynamic programming

technique, where n1 and n2 denote the lengths of the two given biosequences. An argument arises due to the dif-

ferent definitions of the optimum between biologists and computer scientists. The algorithms designed by com-

puter scientists usually result in a mathematically optimal score by then biologists wish to get a biologically op-

timal score. Though many scoring criteria have been proposed [14-16], those are still actually mathematically

optimal, while they may not be biologically optimal. To be mathematical or to be biological, that is the question.

Naor and Brutlag demonstrated that the biologically meaningful alignment is not always the mathematically

optimal one, so that they presented the near-optimal alignments to provide more possible alignments to be se-

lected by biologists [17]. In fact, more alignments increase the possibility of finding the suitable alignment, but

too many alignments may confuse the biologists. Thus, we do need some other biologically filtering criteria to

help us to choose the suitable alignment.

Both biological and mathematical optimization may not be satisfied simultaneously, but it is possible to get an

alignment of biologically optimal score from mathematically optimal results. Since the alignment of the optimal

* Correspondence author

Journal of Computers Vol.18, No.3, October 2007

52

score may not be unique in most cases, we should choose the most biologically meaningful one from those

mathematically optimal alignments or from the output alignments if near-optimal alignments are applied.

In this paper, we present some mathematical scoring criteria to define the most biologically meaningful align-

ment when the alignment of the optimal score is not unique. Naor and Brutlag [17] showed that the biologically

meaningful alignment may not be mathematically optimal. We leave it out of consideration in this paper since we

can also apply our concepts in near-optimal alignments.

The definitions we propose do not guarantee the unique result, but it can be conquered by more criteria. Our

algorithms with the new problem definitions can choose the better alignment from a set of (optimal) output align-

ments without increasing time complexity of the original algorithm. They are themselves interesting problems,

even if we do not consider the practical use of the new problem definitions.

The rest of this paper is organized as follows. In Section 2, we introduce some scoring criteria that are bio-

logically meaningful in optimal alignments. Next, we propose some algorithms for solving the problems in Sec-

tions 3 and 4. Finally, some discussions and conclusions are given in Section 5.

2 Definitions

2.1 The Smoothest Optimal Alignment

Here we use the simplest cost function for DNA sequences as our example to explain the idea of the smoothest

optimal alignment of biosequences S = caagt and T = caaa. Suppose cost function is defined as follows.

==−

≠−

=

=

gapygapx

yx

yx

yx

or 1

if2

1

),(δ

The dynamic programming function to align two biosequences with the above cost function is given as follows.

≥=+−−

≥≠

−−

−−

−−−
==−

=

1 and 1)1,1(

1 and if

1)1,(

1),1(

2)1,1(

max

0or 0),max(

),(

i,jTSjiM

i,jTS

jiM

jiM

jiM

jiji

jiM

ji

ji

where 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, n1 and n2 are the lengths of biosequences S and T, respectively.

The cost (scoring) function can be replaced by any other scoring functions such as the affine gap penalty

[19,20] or score matrices [15,16] like PAMs, Blosums, Gonnets. We do not explain in detail how the traditional

dynamic programming works in the biosequence alignment problem here.

Fig. 1 shows the alignment lattice M of biosequences caagt and caaa with dynamic programming. There

are seven possible paths from the lower right corner to the upper left corner in the alignment lattice, and each of

them is of optimal score 0. Though our example biosequences are short, the optimal alignment is not unique. The

number of the optimal alignments grows rapidly if the given biosequences become longer. Thus we need some

other criteria to tell us which alignment is the better among the output alignments.

In Fig. 2, we show all seven possible optimal alignments in the example. It can be seen that each ideal align-

ment curve is shown by the horizontal dashed line (each alignment position gets the greatest score 1), and the

dotted line means the real alignment curve. To transform the dotted line into the horizontal dashed line (ideal

alignment curve, the smoothest), one should eliminate the vertical parts (cliffs) of the dotted line. We define the

sum of the cliffs ζ of each optimal alignment to be the total lengths of the vertical parts of the dotted line. For

example, the ζ of case (1) in Fig. 2 is |(-1)-1| (first cliff, between
caa

caa
and

a

gt

−
)+ |(-2)--1| (second cliff,

between
−caa

caag
and

a

t
)=2+1=3, and case (5) is |(-1)-1| (first cliff, between

c

c
and

−−
−
aaa

aagt
) + |1--1| (second

cliff, between
ca

c −
and

−−aa

aagt
) + |(-1)-1| (third cliff, between

caaa

aac −
and

−−
gt

) = 2+2+2 = 6.

Tseng et al: The Better Alignment among Output Alignments

53

Fig. 1. The alignment lattice M and possible optimal paths of biosequences caagt and caaa.

Fig. 2. The seven optimal alignments of biosequences caagt and caaa.

Table 1. An example for illustrating the smoothest optimal alignment for biosequences caagt and caaa.

For formal definition, let Ak denote the path of the optimal alignment k and lk denote the path length.

},...,,,{ 210

k

l

kkk

k k
ppppA = (from the upper left corner to the lower right corner),

where 00 =
k

p and k

ip corresponds to the accumulated score of the optimal alignment k from path position 1

through path position i,

 ∑
∑

−≤≤ +−

−≤≤ −+

−+=

−−−=

11 11

11 11

|2|

|)()(|)(

k

k

lk

k

i

k

i

k

i

lk

k

i

k

i

k

i

k

ik

ppp

ppppAζ

In the above formula, k

i

k

i pp 1−− calculates the height (added score) in position i of alignment k. So that the cliff

between positions i+1 and i is |)()(| 11

k

i

k

i

k

i

k

i pppp −+ −−− . The smoothest optimal alignment will be Ak if ζ(Ak) is

minimum. We illustrate the example for clarity in Table 1.

In Fig. 2, cases (2), (4) and (7) are three smoothest optimal alignment cases.

It can be seen that the smoothest (minimum sum of cliffs ζ) optimal alignment here is similar to the affine gap
penalty. The main idea of the affine gap penalty is to add an extra penalty when a new gap starts. In our definition,

each new gap (i.e. from a match or mismatch to gap) causes the cliff (penalty) and there is no cliff if the position

is not a new starting gap. The difference is that the affine gap penalty adjusts the result during biosequence align-

ment, but we fine-tune the result after the affine gap penalty has been adjusted.

 Ak ζ

(1) {0,1,2,3,2,0} |0+2− 2× 1|+|1+3− 2× 2|+|2+2− 2× 3|+|3+0− 2× 2| = 3
(2) {0,1,2,3,2,1,0} |0+2− 2× 1|+|1+3− 2× 2|+|2+2− 2× 3|+|3+1− 2× 2|+|2+0− 2× 1| = 2
(3) {0,1,2,3,1,0} |0+2− 2× 1|+|1+3− 2× 2|+|2+1− 2× 3|+|3+0− 2× 1| = 4
(4) {0,1,2,3,2,1,0} |0+2− 2× 1|+|1+3− 2× 2|+|2+2− 2× 3|+|3+1− 2× 2|+|2+0− 2× 1| = 2
(5) {0,1,0,1,2,1,0} |0+0− 2× 1|+|1+1− 2× 0|+|0+2− 2× 1|+|1+1− 2× 2|+|2+0− 2× 1| = 6
(6) {0,1,2,1,2,1,0} |0+2− 2× 1|+|1+1− 2× 2|+|2+2− 2× 1|+|1+1− 2× 2|+|2+0− 2× 1| = 6
(7) {0,1,2,3,2,1,0} |0+2− 2× 1|+|1+3− 2× 2|+|2+2− 2× 3|+|3+1− 2× 2|+|2+0− 2× 1| = 2

Journal of Computers Vol.18, No.3, October 2007

54

Fig. 3. Two possible templates of biosequence aaggcct.

2.2 The Most Conserved Optimal Alignment

Fig. 3 shows two possible templates of biosequence aaggcct. The same scoring function in Section 2.1 is ap-

plied to them. Both templates get the same optimal alignment score = 3, and even the same ζ = 4. Which one is
better? The answer is case (2) agcct if we add one more criterion - conserved ω.

Table 2. An example for illustrating the most conserved optimal alignment for biosequences caagt and caaa,

used in Fig. 2, where α = 2.

The concept of ω actually comes directly from the homology modeling [11], which is one of the most popular
methods applied to prediction of protein structures. Its main idea is to search for a similar protein (template) with

known 3D structure at the sequence level. We can roughly determine the structure of the target protein by the

template. Then perform the global biosequence alignment to get the structurally conserved regions, and copy the

structure of those regions as a part of the predicting structure. A region is called structurally conserved if the

alignment scores are greater than a predefined threshold τ in each position of the region. In other words, longer
such region is better.

The definition here is the same as that in Section 2.1. Additionally we introduce the concept of blocks. As

shown in Fig. 3, a block is an area with either continuously positive scores or continuously negative scores if

threshold τ is defined as 0. The positive blocks can be viewed as structurally conversed regions, and we should
choose the alignment with the longest positive block. Thus the definition is given as follows.

},...,,,{ 210

k

b

kkk

k k
BBBBA = ,

where k

iB denotes the length of block i in optimal alignment k, and bk is the number of blocks in Ak.

∑ ≤≤
=

kbi

k

ik BA
1

)()(αω ,

where α is a natural number, a parameter to control the weight of the longest block.
The most conserved optimal alignment will be Ak if ω(Ak) is maximum. An example is illustrated in Table 2.

Though the definition of ω does not choose the alignment with the largest positive block, we think it is more
biologically reasonable. The most conserved optimal alignment (i.e. ω is the maximum) breaks the template se-
quence into two kinds of regions, the similar regions and dissimilar regions. This helps a lot when the homology

modeling based methods are applied. The definition of criteria can be modified to fit our requirements if neces-

sary. Some other various criteria will be listed in Section 2.3.

2.3 The Miscellaneous Reasonable Optimal Alignments

There are some other reasonable criteria to get the biologically meaningful optimal alignments. Since they can be

solved trivially or similarly with our algorithms, we only list these criteria here, and ignore the discussion about

how to solve them.

 Ak ω
(1) {3,2} 3

2
+2

2
=9+4=13

(2) {3,3} 3
2
+3

2
=9+9=18

(3) {3,2} 32+22=9+4=13

(4) {3,3} 32+32=9+9=18

(5) {1,1,2,2} 12+12+22+22=1+1+4+4=10

(6) {2,1,1,2} 22+12+12+22=4+1+1+4=10

(7) {3,3} 32+32=9+9=18

Tseng et al: The Better Alignment among Output Alignments

55

Minimum Highest Cliff Optimal Alignment We have mentioned about the sum of the cliffs ζ in Section 2.1.
Here we modify it that the longest vertical line (cliff) of the optimal alignment should be the minimum

among all optimal alignments. That is, the highest cliff of the alignment is the minimum among all the

highest cliffs in all optimal alignments. We call it the minimum highest cliff optimal alignment. In other

words, it becomes a mini-max problem or a bottleneck problem. Let HCk be the highest cliff of optimal

alignment Ak, then the minimum highest cliff optimal alignment will be Ak if HCk is minimum. As an ex-

ample, the minimum highest cliff optimal alignments in Fig. 2 are cases (1), (2), and (4)-(7). The highest

cliffs of them are all 2.

Shortest Path Optimal Alignment It is widely believed that the biosequences should be compact. Since the

scores of those optimal alignments are the same, the shortest one (lk is minimum) is the most compact to

meet our wish. Cases (1) and (3) in Fig. 2 are what we are looking for here.

Largest Block Optimal Alignment In Section 2.2, we summarize the α power of all blocks in optimal align-
ments, and find which one is the maximum. Here we try to select the optimal alignment with the largest

block. This usually means the same alignment as Section 2.2 mentioned. Let LBk be the largest block of

optimal alignment Ak. The largest block optimal alignment will be Ak if LBk is maximum. The largest

block of case (2) in Fig. 3 has length 4.

Positive Blocks Only Optimal Alignment With slight modification from Section 2.2, we summarize the α power
of positive blocks only and ignore the negative blocks in the optimal alignment. The reason is that the

positive blocks are more meaningful in conserved regions. We use the same definitions in Section 2.2.

∑ ≤≤
=

kbi

k

iikp BSA
1

)()(αω ,

where Si is 1 if block i is positive and 0 if otherwise. The positive block only optimal alignment will be Ak if ωp(Ak)

is maximum.

Maximum Loser Region Optimal Alignment The idea comes from Zhang’s alignment algorithm [20]. Its spirit

is to align the biosequences without low-scoring regions. It is an opposite point of view with the other

criteria we mentioned above. A region is any continuous part of the alignment and a loser region is the

region with the minimum score in the alignment, defined as follows.

Loser Region LRk =)(min1
k

i

k

jlji pp
k

−≤≤≤ ,

where LRk is the loser region of optimal alignment Ak.

The maximum loser region optimal alignment will be Ak if LRk is maximum. For example, the loser region

scores of cases (5) and (6) in Fig. 2 are -2, which are maximum, since all other loser regions have score -3.

3 An Algorithm for the Smoothest Optimal Alignment

In this section, we shall propose an algorithm to solve the smoothest optimal alignment (SOA) problem defined

in Section 2.1. The problem is to find the optimal alignment which is with the minimum sum of cliffs ζ. Let us
take the biosequences caagt and caaa as our example in Fig. 4. The number in each circle corresponds to the

total score from the starting position, which is (0,0), to the position, and the pair of numbers (i, j) in circle mean

the position indexes in the alignment lattice, and the number beside each edge represents the score (cost) when

the edge is included.

Our algorithm is given as follows. The alignment lattice M is of size (n1 +1)×(n2 +1), where n1 and n2 are the

lengths of the two given biosequences. In our algorithm, Ci,j[V,H,D] corresponds to the added score (edge cost)

from prior V-vertical, H-horizontal, and D-diagonal position to positions (i, j), and ζi,j{V,H,D} corresponds to the
minimum sum of cliffs from position (n1,n2) across prior V-vertical, H-horizontal, and D-diagonal positions to

position (i, j). For example, C2,2 = [− 1,∞,1] means that the vertical edge going to position (2,2) is of cost -1.

There is no horizontal edge going to position (2,2), so its cost is ∞. And the diagonal edge is of cost 1. ζ2,2=

{4,∞,2} means that the minimum accumulated cliffs from position (n1,n2) across vertical edge to position (2,2) is

4. There is no possible path from position (n1,n2) across horizontal edge to position (2,2), so the minimum accu-

mulated cliffs is ∞. And the minimum accumulated cliffs from diagonal edge are 2.
The tracings in our algorithm are defined as the construction of all possible optimal alignment paths. For ex-

ample, Tracings3,2 =<V,H,D > in Fig. 4 is < True,False,True >. This means that the accumulated score of position

(3,2) comes from position (2,2) (vertical edge) or position (2,1) (diagonal edge). We say that a position (i, j) is in

tracing if (i, j) is in one of optimal alignment paths. The grey positions in Fig. 1 are in tracing. It is a little pro-

gramming skill and this will be easier for us to explain our algorithm.

Journal of Computers Vol.18, No.3, October 2007

56

Fig. 4. The final result graph after algorithm SOA is performed on biosequences caagt and caaa. [] represents

the values in Ci, j [V,H,D] and { } represents the values in ζi, j{V,H,D}.

Algorithm: Smoothest Optimal Alignment (SOA)

Input: Alignment lattice M with tracings.

Output: Minimum sum of cliffs ζ among all optimal alignments.
Step 1: .10},,0,{},,{;10},,,0{},,{ 2,1, 12

−≤≤∞∞=−≤≤∞∞= njDHVniDHV jnni ζζ

If (i, j) is not in tracing, },,{},,{, ∞∞∞=DHVjiζ and],,[],,[, ∞∞∞=DHVC ji , where 0≤ i≤ n1, 0≤ j≤ n2.

Step 2: Compute the following if (i, j) is in tracing. Otherwise do nothing.

∞

++−++
=

∞

+−+
=

∞

+−+
=

=

otherwise,

, to11 from tracinga is thereif),()1,1(
][

otherwise,

, to1 from tracinga is thereif),()1,(
][

otherwise,

, to1 from tracinga is thereif),(),1(
][

,

(i,j)),j(ijiMjiM
D

(i,j))(i,jjiMjiM
H

(i,j),j)(ijiMjiM
V

C ji

where 0≤ i ≤ n1, 0≤ j≤ n2.

The goal of this step is to calculate the 3-way (vertical, horizontal, diagonal) added scores (edge costs) of each

position.

Step 3: Compute the following if (i, j) is in tracing. Otherwise do nothing.

}0|,][][||,][][{|},,{
2121212121 ,11,11,1,11,1 VCHCHCVCDHV nnnnnnnnnn −−−−−−−− −−=ζ

−+

−+

−+

=

−+

−+

−+

=

−+

−+

−+

=

=

++++

++++

++++

++

++

++

++

++

++

|][][|}{

|][][|}{

|][][|}{

min}{

|][][|}{

|][][|}{

|][][|}{

min}{

|][][|}{

|][][|}{

|][][|}{

min}{

1,1,1,1

1,1,1,1

1,1,1,1

1,,1,

1,,1,

1,,1,

,1,,1

,1,,1

,1,,1

,

DCDCD

HCDCH

VCDCV

D

DCHCD

HCHCH

VCHCV

H

DCVCD

HCVCH

VCVCV

V

jijiji

jijiji

jijiji

jijiji

jijiji

jijiji

jijiji

jijiji

jijiji

ji

ζ
ζ
ζ

ζ
ζ
ζ

ζ
ζ
ζ

ζ

where 0≤ i≤ n1 − 1, 0≤ j≤ n2 − 1.

Tseng et al: The Better Alignment among Output Alignments

57

In this step, we calculate the minimum accumulated cliffs from position (n1,n2) to position (i, j). For example,

position (2,2) in Fig. 4 has two possible ways, vertical and diagonal, to it. In the diagonal way, there are three

ways to position (3,3). i.e., the minimum accumulated cliffs across (3,3) to (2,2) is

min(0+ |(-1)-1| ,0+ |(-1)-1| ,1+ |(-2)-1|) = min(2,2,4) = 2. There exists no horizontal way to position (2,2), so

that ζ2,2{H} = ∞. The only possible path across (3,2) to (2,2) has minimum accumulated cliffs 2+ |1--1| = 4. Fi-

nally, we get ζ2,2{V,H,D} = {4,∞,2}.
Step 4: After ζ0,0{V,H,D} has been found, we can trace back to find the smoothest optimal alignment of given
biosequences.

It is very important to compute elements in order. Here the only condition is that (i+1, j), (i, j+1) and (i+1, j+1)

have to be computed before we compute (i, j), 0≤ i≤ n1 − 1 and 0≤ j≤ n2 − 1.

Fig. 4 shows the full result after SOA is performed. The numbers in [] are Ci,j [V,H,D], and the numbers in { }
are ζi,j{V,H,D}. It is trivial that the time complexity of Algorithm SOA is O(n2

).

4 An Algorithm for the Most Conserved Optimal Alignment

In this section, we shall find the most conserved optimal alignment which is with the maximum ω, defined in
Section 2.2. It can be done by the same technique as we used in Section 3, dynamic programming. We illustrate it

with Fig. 5. The meanings of the numbers in Fig. 5 are the same as those in Section 3, except those numbers in { }.
And < > are newly defined, we shall explain their meanings later.

In our algorithm, n1 and n2 denote the lengths of the two given biosequences. The alignment lattice M here is

of size (n1+1)×(n2 +1). Here we use α = 2 to control the weight of the longest block. In our algorithm, Li,j

<V,H,D> means the length of the current block till now from prior V-vertical, H-horizontal, and D-diagonal

positions to position (i, j), and ωi,j{V,H,D} corresponds to the maximum ω from position (n1,n2) across prior V-

vertical, H-horizontal, and D-diagonal positions to position (i, j) without adding Li,j<V,H,D>
2
. Ci,j [V,H,D] is

reused as the same meaning in algorithm SOA.

Algorithm: Most Conserved Optimal Alignment (MCOA)

Input: Alignment lattice M with tracings.

Output: Maximum ω among all optimal alignments.
Step 1: .0,0},0,0,0{},,{},0,0,0{},,{ 2,, njniDHVDHVL ijiji ≤≤≤≤== ω

If (i, j) is not in tracing,],,[],,[, ∞∞∞=DHVC ji , where 0≤ i≤ n1, 0≤ j≤ n2.

Step 2: Compute the following if (i, j) is in tracing. Otherwise do nothing.

∞

++−++
=

∞

+−+
=

∞

+−+
=

=

otherwise,

, to11 from tracinga is thereif),()1,1(
][

otherwise,

, to1 from tracinga is thereif),()1,(
][

otherwise,

, to1 from tracinga is thereif),(),1(
][

,

(i,j)),j(ijiMjiM
D

(i,j))(i,jjiMjiM
H

(i,j),j)(ijiMjiM
V

C ji

where 0≤ i≤ n1, 0≤ j≤ n2.

Step 3: Compute the following if (i, j) is in tracing. Otherwise do nothing.

 ++

=

 +

=

 +

=

=

otherwise,0

, to11 from tracinga is thereif),,(
}{

otherwise,0

, to1 from tracinga is thereif),,(
}{

otherwise,0

, to1 from tracinga is thereif),,(
}{

,

(i,j)),j(iDjiChoose
D

(i,j))(i,jHjiChoose
H

(i,j),j)(iVjiChoose
V

jiω

where 0 ≤ i≤ n1 − 1, 0≤ j≤ n2 − 1.

Journal of Computers Vol.18, No.3, October 2007

58

Fig. 5. The final result graph after algorithm MCOA is performed on biosequences caagt and caaa,

which α = 2 and τ = 0. < > represents the values in Li,j <V,H,D > and { } represents the values in ωi,j{V,H,D}.

Step 4:

><+=

><+=

><+=

=

.}{}{

}{}{

}{}{

2

0,00,0

2

0,00,0

2

0,00,0

0,0

DLDD

HLHH

VLVV

ω
ω
ω

ω

Step 5: After ω0,0{V,H,D} has been found, we can trace back to find the most conserved optimal alignment of
given biosequences.

Since it is complicated to decide the value of ωi, j{V,H,D}, we use the function Choose(i, j,W) to decide the

correct value, where i and j mean the coordinates and W (may be V or H or D) corresponds to the direction that it

came from. We show the function Choose(i, j,W) as follows.

Function: Choose(i, j,W)

Input: i, j and W, where i, j mean the coordinates and W (may be V or H or D) corresponds to the direction that it

came from.

Output: The correct value of ωi, j{W}, and the value of Li, j <W> which is updated to a correct one.

Step 1:

=++

=+

=+

=

DWji

HWji

VWji

yx

if)1,1(

if)1,(

if),1(

),(

Step 2: Check whether if the phase is changed from (x,y).W′ to (i, j).W or not.

((x,y).W′ corresponds to the outgoing edge of direction W′ at position (x,y).)

A phase is changed if and only if

≠=

≤>

≥<

,][&]'[

][&]'[

][&]'[

,,

,,

,,

ττ
ττ
ττ

WCWC

WCWC

WCWC

jiyx

jiyx

jiyx

where W′ is V, H or D, and τ is the threshold to judge if a cost is conserved. Phase-changed means a new
block, and we have to reset the length of the current block to 1.

Tseng et al: The Better Alignment among Output Alignments

59

Step 3: Compute the following:

+><
>=<

+><
>=<

+><
>=<

=

otherwise,1

,. to., from changed is phase if1

otherwise,1

,. to., from changed is phase if1

otherwise,1

,. to., from changed is phase if1

,

,

,

DL

W(i,j)Dy)(x
D

HL

W(i,j)Hy)(x
H

VL

W(i,j)Vy)(x
V

TempL

yx

yx

yx

><+

><+><+
=

><+

><+><+
=

><+

><+><+
=

=

otherwise,}{

,. to., from changed is phase if}{
}{

otherwise,}{

,. to., from changed is phase if}{
}{

otherwise,}{

,. to., from changed is phase if}{
}{

2

,

22

,,

2

,

22

,,

2

,

22

,,

DTempLD

W(i,j)Dy)(xDTempLDLD
D

HTempLH

W(i,j)Hy)(xHTempLHLH
H

VTempLV

W(i,j)Vy)(xVTempLVLV
V

Temp

yx

yxyx

yx

yxyx

yx

yxyx

ω
ω

ω
ω

ω
ω

ω

Step 4: Without loss of generality, assume Tempω{Z} is greater than the other two. Then,
Li, j <W >= TempL < Z >

 ><+

=
otherwise.}{

,. to., from changed is phase if}{

,

2

,,

Z

W(i,j)Zy)(xZLZ
OK

yx

yxyx

ω
ω

Notice that if there are more than one maximum in Tempω{V,H,D}, we should find the most benefit one as our Z.

Step 5: Return(OK).

The computing order we use here is the same as it in Section 3. Fig. 5 shows the full result after MCOA is per-

formed. The numbers in < > are Li, j<V,H,D>, and the numbers in { } are ωi, j{V,H,D}. Since function
Choose(i, j,W) can be achieved in constant time, the time complexity of MCOA is clearly O(n

2
).

5 Conclusions

In this paper, we propose two algorithms to refine the traditional optimal biosequence alignments in different

criteria without increasing the time complexity of the original algorithm. The algorithms are efficient and easy to

implement. The criteria to find the better alignment among output alignments are reasonable and biologically

meaningful. Though we may not decide the unique alignment, this is still a novel concept in improving the bio-

logical knowledge and a brand new way to study what the real optimal means. The refined optimal alignment of

our algorithm is both mathematically optimal and biologically meaningful. It helps any method based on homol-

ogy modeling in predicting 3D protein structure to find a better template, then to get a more accurate prediction

result.

What are the criteria that we need to find the better alignment among output alignments? The problem can be

open to discuss. One thing we should notice is that the criteria to measure if an output alignment is better than

another may be meaningless in traditional biosequence alignment techniques. Taking the definitions in Section 2,

for example, any two biosequences with the below alignment may get the best score in some of our definitions.

a1a2···am---−−−−−

−-−−−--−b1b2···bn

However, it is a very bad alignment. Thus we cannot apply those criteria to the traditional biosequence align-

ment problem. How to solve the problem with some different fantastic criteria is interesting, even if we ignore the

practical use of the criteria. In the future, we may like to study if it is possible to solve the problem with the same

time complexity by two or more criteria, or we have to perform the biosequence alignments over and over again

to extract the better alignment among the output alignments. Moreover, does this refining concept do any good

with multiple biosequence alignment problems? Those problems may be worth further study.

Journal of Computers Vol.18, No.3, October 2007

60

Acknowledgement

This research work was partially supported by the National Science Council of Taiwan under contract NSC-95-

2221-E-110-084.

References

[1] S. Altschul and B.W. Erickson, “Optimal sequence alignment using affine gap costs,” Journal of Molecular Biology,

Vol. 48, pp. 603–616, 1986.

[2] D. F. Feng, M. S. Johnson, and R. F. Doolittle, “Aligning amino acid sequences: comparison of commonly used

method s,” Journal of Molecular Evolution, Vol. 21, pp. 112–125, 1985.

[3] O. Gotoh, “An improved algorithm for matching biological sequences,” Journal of Molecular Biology, Vol. 162, pp.

705–708, 1982.

[4] O. Gotoh, “Optimal sequence alignment allowing for long gaps,” Bulletin of Mathematical Biology, Vol. 52, pp. 359–

373, 1990.

[5] W. Pearson andW.Miller, “Dynamic programming algorithms for biological sequence comparison,” Methods in Enzy-

mology, Vol. 210, pp. 575–601, 1992.

[6] A. Apostolico and C. Guerra, “The longest common subsequence problem revisited,” Algorithmica, No. 2, pp. 315–

336, 1987.

[7] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common subsequence algorithms,” Seventh International

Symposium on String Processing Information Retrieval, pp. 39–48, 2000.

[8] D. S. Hirschberg, “Algorithms for the longest common subsequence problem,” Journal of the ACM, Vol. 24, No. 4, pp.

664–675, 1977.

[9] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest common subsequences,” Communications

of the ACM, Vol. 20, No. 5, pp. 350–353, 1977.

[10] C. B. Yang and R. C. T. Lee, “Systolic algorithms for the longest common subsequence problem,” Journal of the

Chinese Institute of Engineers, Vol. 10, No. 6, pp. 691–699, 1987.

[11] Y. Y. Chen, C. B. Yang, and K. T. Tseng, “Prediction of protein structures based on curve alignment,” Proc. of the

20th Workshop on Combinatorial Mathematics and Computation Theory, pp. 33–44, 2003.

[12] M. Hilbert, G. Bohm, and R. Jaenicke, “Structural relationships of homologous proteins as a fundamental principle in

homology modeling,” Proteins, Vol. 17, No. 2, pp. 138–151, 1993.

[13] R. Lewin, “When does homology mean something else?” Science, Vol. 237, p. 1570, 1987.

[14] S. F. Altschul, W. Gish, W. Miller, E.W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of

Molecular Biology, Vol. 215, pp. 403–410, 1990.

[15] M. O. Dayhoff., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington, DC,

1978.

[16] R.M. Schwartz and M. O. Dayhoff., Matrices for detecting distant relationships. National Biomedical Research Foun-

dation, Washington, DC, 1979.

[17] D. Naor and D. L. Brutlag, “On near-optimal alignments of biological sequences,” Journal of Computing Biology, Vol.

4, pp. 349–366, 1994.

Tseng et al: The Better Alignment among Output Alignments

61

[18] S. F. Altschul, “Gap costs for multiple sequence alignment,” Journal of Theoretical Biology, Vol. 138, pp. 297–309,

1989.

[19] A. M. Lesk, M. Levitt, and C. Chothia, “Alignment of the amino acid sequences of distantly related proteins using

variable gap penalties,” Protein Engineering, Vol. 1, pp. 77–78, 1986.

[20] Z. Zhang, P. Berman, and W. Miller, “Alignments without low-scoring regions,” Research in Computational Molecu-

lar Biology, Vol. 5, pp. 294–301, 1998.

Journal of Computers Vol.18, No.3, October 2007

62

